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Abstract

We study multidimensional cheap talk with simple language and aligned preferences.
An expert communicates with a decision-maker using a score that aggregates a multidi-
mensional state into a one-dimensional message. Expert and decision-maker share the
same quadratic-loss utility function. We show that the use of simple language introduces
strategic considerations. First, equilibrium payoffs may be lower than those achievable
under commitment to a score. Additionally, any equilibrium score must be either linear
or discrete. Finally, for normally distributed states, the set of equilibrium linear scores

includes only the ex-ante best and worst linear scores.
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Give me a one-handed economist.

Harry Truman

1 Introduction

Experts often advise decision-makers who lack specialized knowledge. To reach their audi-
ence, experts have to adopt a simple language. Scientists, for instance, publish recommen-
dations such as “5 a day” and rely on coarse metrics such as carbon footprints or nutritional
labels. Similarly, product reviewers employ simplified quality indicators, such as star ratings
or letter grades. In this study, we examine the strategic incentives that arise when experts

communicate using simplified language, which we refer to as “scores”.

We focus on credible scores, i.e., scores that are equilibrium strategies. A score is credible
if, once the expert observes the relevant features of the state of the world, he has no incen-
tive to misreport the score. To isolate the effect of strategic incentives, we focus on settings
in which the sender and receiver share identical preferences. If the expert could use a lan-
guage as rich as the object described, the alignment of preferences would make credibility a
vacuous constraint: when language is sufficiently rich, revealing every relevant aspect of the
object under consideration is both optimal and credible. When experts communicate using
simplified language, the nature of optimal and credible communication is not immediately

clear.

We explore communication via scores in a multi-dimensional cheap talk game with aligned
preferences. A sender knows a two-dimensional state of the world. A receiver takes a two-

I Sender and receiver share the

dimensional action to minimize a quadratic loss function.
same payoffs. A score is a mapping from the state space to a real number that satisfies a
property we dub “Intermediate Value Property”. Essentially, we require that small changes
in the state of the world can only cause small changes in the score. The property captures
the idea that the score must represent the underlying physical reality of the state space. All
continuous scores satisfy the property. If the score has a countable image, e.g., a five-star

rating, a marginal change in the state cannot make the score change by more than one star.

'The model could also describe a sender who addresses two different audiences with the same message.



We say that a score is credible if there is a Perfect Bayesian Equilibrium where the sender

maps states of the world into messages according to the score.”

Our definition of scores captures a notion of “simple language”. For instance, scores require
the language to be coarser than the state: bijections between the state space and the real line
do not satisfy the Intermediate Value Property. At the same time, our definition is flexible: it
does not impose monotonicity or other functional form assumptions and accommodates both

discrete and continuous images of the mapping from states to messages.

Our first result shows that communicating through scores can lead to welfare losses due to
strategic frictions: in some situations, no ex-ante optimal score is credible. This is possible
because the sender can deviate from the optimal score to a strategy that is not a score, once
the receiver’s expectations are set. Whenever such a deviation is profitable, commitment has

value.

We then characterize the shape of credible scores when the state space is R?. We show that
credibility imposes two types of restrictions on the score. First, it imposes functional form
restrictions: any credible score is either linear or is a discrete coarsening of a linear score.
Second, in many cases, no linear score is credible and a credible score must be discrete. This
shows that the sender needs to use a coarser language to maintain the credibility of the score

— for example a five-star rating instead of a continuous one.

In some instances, credible linear scores exist. When the state is normally distributed, we
show that there are exactly two credible linear scores. These correspond to the ex-ante best
and worst linear scores. One score positively correlates the actions across dimensions, and the
other one negatively correlates them. The optimality of each score depends on the correlation
between the two dimensions of the state of the world. This result shows that some scores can

have poor welfare properties while still being credible.

1.1 Related Literature

We introduce a new notion of simple language in cheap-talk models by requiring the sender to
use a score, an aggregator of a multidimensional state, in equilibrium. Our definition of score

rules out bijections while being flexible enough to allow for discrete or continuous scores.

2Note that we propose here an equilibrium selection criterion for simple languages, not a restriction on the
set of strategies. In other words, the sender is allowed to deviate to any strategy.



We show that modeling simpler language through equilibrium properties introduces strategic
considerations and imposes additional constraints on communication. Closest to our paper is
the literature studying cheap talk models with aligned preferences and some form of language
limitation.® Jiger et al. (2011) study a similar model where the sender is constrained to use a
finite number of messages. They establish that the ex-ante optimal strategy is an equilibrium
and study the stability of the equilibrium. In Blume and Board (2013) and Blume (2018)
uncertainty about the language used can impede communication. These three papers find that
optimal strategies are equilibrium strategies.* We take a different approach from these papers
by requiring simplicity to be an equilibrium property instead of a constraint on the strategy
space itself. In particular, the optimal scores are not necessarily equilibrium strategies and
therefore strategic frictions impose constraints on communication beyond the properties of

SCores.

We also relate to the literature on multidimensional cheap talk. This literature has shown
that multiple dimensions can be useful for information revelation, e.g., Battaglini (2002),
Chakraborty and Harbaugh (2007) and Chakraborty and Harbaugh (2010). In this strand
of the literature, the contribution closest to ours is Levy and Razin (2007), who show that
correlation across dimensions can limit communication by creating informational spillovers
across dimensions. Similar mechanisms are at play in our paper as the sender needs to balance

how the score, a one dimensional object, reveals information across both dimensions.

Finally, there is a strand of the literature in information design where the amount of infor-
mation transmitted is limited. In Gentzkow and Kamenica (2014), the limitation comes from
the cost of designing the experiment, while in Bloedel and Segal (2021) it comes from the
information-processing cost faced by the receiver. When considering optimal scores, we im-
pose a restriction directly on the shape of the information structure, by limiting the sender to
select among scores. In this way we are closer to Le Treust and Tomala (2019) and Aybas
and Turkel (2024), who consider exogenous constraints on the capacity or cardinality of the

message space.

3This literature, like us, looks at the consequences of language limitations, not its causes. On the latter topic
see Lipman (2003) and Lipman (2025).

4Similarly, Lipman (2025) uses the fact that optimal strategies are equilibrium strategies to show that there
is always an equilibrium in pure strategy when preferences are aligned in cheap-talk games with a possibly
constrained set of messages.



2 Model

There are two players: a sender and a receiver. The sender has private information about a
two-dimensional state of the world, § = (6,,602) € © C R2, whose distribution admits a
density function f if the state is infinite. Otherwise, f denotes the probability mass function.
We assume that the variance of # is finite. When there is some ambiguity, we use 0 to
denote the random variable with realization 6. The receiver takes two actions represented by
a = (a1,ay) € R% Before the receiver takes action, the sender sends a cheap-talk message

m € R. Sender and receiver share the same payoff function
’LL(CL, 49) = —gb(al - 91)2 - (CLQ - 62)2,

with ¢ > 0. Both players want each action to match the state. The parameter ¢ determines
the dimension along which the loss from mismatch is the largest. Let x : © — R and
a : R — R? denote pure strategies of the sender and the receiver. Also, for any m € R and

i = 1,2, let a;(m) denote the i—th element of a(m).
We are interested in a class of Perfect Bayesian Equilibria that we define in the next section.

An example of this setting is an expert giving advice to a government that needs to design
a multidimensional policy. For example, promoting a healthy diet among different subpop-
ulations, choosing tax levels for different groups or taking multiple investment decisions in

some technology.

Our model is also equivalent to a model with two receivers, each taking a one-dimensional
action. Each receiver minimizes a one-dimensional quadratic loss function and the sender
maximizes a weighted sum of the receivers’ payoffs. An example here could be an expert

directly promoting a healthy diet among different subpopulations.

2.1 Scores
A score s is a non-constant function from © to R that satisfies the following property:

Intermediate Value Property (IVP): for any 0,6 € O such that s(f) > s(¢') and any
m € [s(0'),s(0)] N s(O), thereis a §” € s7'(m) suchthat 0 A9 < 0" <OV

SHere, A is the component-wise minimum and V is the component-wise maximum: 6 A ¢ =



We discuss this definition in more detail below.

The set of scores is denoted by S, and we refer to the typical realization of s as m. We say
that a score is optimal if it solves the following maximization problem:
max B~ (as(5(6)) — 61)° — (aa(s(0)) — 6:)°

s.t. a(m)=E[flm], Vm e s(O). (BR)

A score is thus optimal if it maximizes the expected payoff among scores, given that the

receiver best responds.

We say that a score s : © — R is credible if there is a Perfect Bayesian equilibrium (PBE)
such that p(0) = s(@) for all 6. A score is thus credible if and only if there is « that satisfies
(BR) and VYm, m' € s(©) and V0 € O:

s(0) =m = —d(ai(m) = 1)* — (az(m) — 62)* = —d(ar (m) — 61)* = (az(m’) — 02)*.
(1)

We note that a credible score always exists.

Proposition 1. A credible score exists.

The proof is in Section A. We show existence of a credible score by showing that there
always exists a PBE with two messages in the support of the sender’s strategy. Because a
non-constant strategy with two messages satisfies all the properties of a score, a credible

score exists.

A score aggregates the two-dimensional state of the world into a one-dimensional object.
The Intermediate Value Property ensures that the score is a well-behaved aggregator of the
two-dimensional state of the world. Its economic interpretation is that it imposes a weak
form of continuity: small changes in the state correspond to small changes in the score. We
regard this property as a minimal requirement that the score must represent the underlying
physical reality of the state space. All continuous mappings from O to R satisfy the property.
For discrete mappings instead, the property requires that a minimal increment in the state
changes the score by at most one grade. On a mathematical level, the property also rules out

bijections between R? and R, in line with our original motivation.’

(min{6y, 67}, min{6,,05}) and 6 V ¢ = (max{6;, 61}, max{62,05}).
6Similarly, one can also show that the IVP rules out bijections for scores of the form s : {1,...,n}?> — R.
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Lemma 1. A score s : R> — R is not a bijection.

Proof. If |s(©)| < 2, then s cannot be a bijection. Take some messages m,my, ms € s(0O)
with m; < m < my. Take 6, 0, 6% such that s(6) = m, s(0') = m, and s(6%) = ma.

We can draw a curve from 6! to #* consisting of straight vertical and horizontal segments
such that this curve does not intersect with . At least one of these segments has end points,
denoted 0" and 0", such that s(¢') < m < s(6”). By the IVP, there must be #” on that
segment such that s(60"”) = m. O

Scores can exist if the state space is finite, e.g. © = {0, 1}?. Figure 1 shows 4 different scores
for this space; in the figure, dots in the same area represent states to which the score assigns

the same signal.
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Figure 1: Examples of scores for © = {0, 1}?

When the space is infinite, e.g. © = R?, scores can have finite images, e.g., five-star ratings,

or infinite ones:

* 5(0) = Bo + 101 + Baby;

1 if 81601 + Babs > ¢,
0 otherwise.

* 5(0) = /(0 —c1)? + (0> — c2)*.



These examples show that scores can take many different forms. In particular, they can be
continuous functions or take discrete values. The score does not need not be increasing or
decreasing in any dimension. The last example shows a score that measures the distance
between the state and a point (cy, c2) on the plane. If the state 6 represents political positions
along two dimensions, this score can be interpreted as a measure of extremism where (cq, ¢o)

would be the political center.

3 Analysis

3.1 Value of Commitment

We first argue that commitment has value, i.e., that it can be the case that none of the optimal
scores is credible. We make our argument with an example. Let ¢ = 1, the state take values
© = {0, 1}? and, for simplicity, let f(6) # f(¢') for any two states § # ¢'. Let scores sq and
sp be as shown, respectively, in the top left and top right panels of Figure 1. Score s, assigns
the same message to states (0,1) and (1,0) while assigning unique messages to the other
states. Score sp instead assigns the same message to states (0,0) and (1, 1) while assigning
unique messages to the other states. Up to an inconsequential relabeling of the messages, the

optimal score is either s, or sp.

Remark 1. The optimal score is either s; or sp. Score sy is optimal if:

f(0,0)f(1,1)
f(0,0) + f(1,1)

f(0,1)f(1,0)
f(0,1) + £(0,1)°

> )

if the condition holds with a reversed inequality, score sp is optimal.

The proof of this and the next remark are in Section B. The optimal score is credible if and
only if the prior probabilities of the two states associated with the same message are not too
different.

Remark 2. Suppose the optimal score assigns the same signal to states 0 and 6. The optimal

score is credible if and only if

< [ )
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The intuition is as follows. Suppose condition (1) holds strictly, so that s; is the unique

f(0.1)
f(1,0)
so that the posterior associated with m = 2 is “close” to (0, 1) and “far” from (1, 0). In

optimal score. Score s, is shown on the left-hand side of Figure 2. Suppose also that >

1
V2-1’
fact, the posterior is so far from (1, 0) that the score is not credible: if the receiver expects the

sender to communicate according to the score, i.e., i(0) = s4(6) for all 6, then the sender has
a profitable deviation upon observing state (1,0). Figure 2 shows one such deviation, which

involves message /(1,0) = 3 instead of x(1,0) = 2.

.X o [ o mm=3
m =
Om=1

N x E[0_|m =9
\./ ¢ @ ®

Figure 2: Left: Strategy ;1 = s4. Right: Profitable Deviation from p = sg.

The deviation leads to a strategy that violates the IVP, as it “jumps” from p(0,0) = 1 to
1(1,0) = 3. This strategy is not a score. In general, optimal scores need not be credible
precisely because deviations to strategies that are not scores are possible.” This is in con-
trast with the rest of the literature that studies cheap talk models with aligned preferences
(Jager et al. (2011), Blume and Board (2013) and Blume (2018)) where the constraints on

communication is on the message space directly and not on the properties of the equilibrium.

3.2 Infinite State Space

We characterize here credible scores when the state space is R?. We show that credible
scores must satisfy specific properties that are imposed by the equilibrium conditions. We

first introduce three definitions.
A score s is linear if there exists 3; and 3, such that, for any § € R?,

s(6) = 101 + Babs.

"Relatedly, in some cases, the players are better off if the sender only observed one state of the world (an
example of such a case is available upon request). The intuition here is that ignorance reduces the set of potential
deviations available to the sender.




A score s is coarsely linear if it has a discrete image M C Z and there exists $; and 5 such
that
s(0) =m & e < Brbr + Paby < cpm,

with —oco < ¢,,,_1 < ¢, < 400 for any § € R2.

Essentially, a coarsely linear score can be constructed by taking a linear score and partitioning

its image into a countable number of intervals.
The scores s and s’ are equivalent if E[f]s(0)] = E[f]s'(#)] for all § € ©.
We are now ready to state the result of this section.

Proposition 2. Suppose © = R2. Any credible score is equivalent to a linear or coarsely

linear score.

The proof is in Section C. To understand how we get Proposition 2, observe that given a
belief about the sender’s strategy, the receiver takes an action a(m) = E[f|m]. The sender’s
objective in state 6, given this belief, is to choose the message m’ that minimizes the loss
function:

min (6(6) — ay(m'))? + (6 — @ (m'))?) .

As the sender minimizes a weighted Euclidean distance, in any equilibrium the set of states
indifferent between any two messages must be a line. Furthermore, the IVP requires that
such indifference lines do not cross. These observations imply that every credible score with
a discrete image must be coarsely linear. Linear scores can be seen as a limit case of coarsely
linear scores. The rest of the proof shows that when the image of the score is not discrete,

linear scores are the only scores compatible with credibility.

With a loss function that is not a quadratic one, the credibility of the score would impose other
restrictions on the score’s functional form. In light of this observation, Proposition 2 should
not be interpreted as showing that linear strategies are special, but rather that credibility

imposes functional form restrictions on communication.

A linear score is credible only if the receiver’s expectations are linear in the score. When this
condition is not met, all credible scores are coarsely linear. In these cases, the sender limits
the information he transmits to maintain credibility. Indeed, every coarsely linear score can

be improved upon by a score using more messages.
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3.3 Normally Distributed State

There are important classes of distributions — such as the normal distribution — for which
the conditional expectations given a linear score are linear. In this case, a credible linear score

might exist. We now characterize the linear scores when the state is normally distributed.®

LetS; = {s: R? — R : sis linear}. We refer to a score as an ex-ante best linear score if it

solves the problem:

max E[—¢(ai(s(0)) — 01)? — (aa(5(0)) — 62)?] st a(m) =E[@lm], Vm € s(O).

SES;

We instead refer to a score as an ex-ante worse linear score if it solves

min E[—¢(a1(s(0)) — 61)* — (aa(s5(0)) — 62)%]  s.t. a(m) =E[#|m], Vm € s(0).

SES;
Let
0'2 012
="t ;
be a covariance matrix and
¢ 0
0 1

We identify a linear score s() = 3’0 with the weights 3 = (1, 32)".°

Proposition 3. Let 6 ~ N(0,X). The set of credible linear scores are the eigenvectors of

Y®. These are the ex-ante best and worst linear scores.

The proof is in Section D. Proposition 3 shows that when the state is normally distributed,
the best linear score is achievable in equilibrium. However, another linear equilibrium exists,
corresponding to the worst possible linear score. The key idea underlying the proof is the
following. A linear score [3, with corresponding strategy «, is credible if the indifference
curve of each type 6 sending message m, {a € R? : u(a,6) = u(a(m),6)}, is tangent to the
curve {a(m) : m € R}. We show that the linear scores 3 satisfying these tangency conditions
are the eigenvectors of 2 ®. These eigenvectors, in turn, solve the first-order conditions of the

ex-ante maximization problem.

8The next result remains valid under elliptical distributions — a broader class of distributions that also
satisfy the linear conditional expectations property.
9We use the convention that when writing a vector as a matrix, it is a column vector.
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The proof of Proposition 3 is general and can be extended to arbitrary dimensions of the state
and action space. When the dimension is larger than two, the set of credible linear scores
coincides with the set of stationary points of the ex-ante maximization problem. In the case
of two dimensions, we can explicitly calculate the credible linear scores. Note that for any
constant ¢ # 0, two linear scores 3’ and 3” such that 8’ = ¢(” induce the same distributions

over actions. Therefore, any linear score is determined by the ratio 3 /3, if the ratio exists.

Corollary 1. Suppose 15 # 0. The credible linear scores, ' = (01, 55) and " = (57, 55),

are determined by the ratios

B _ ot — 03 + (¢t — 03)* + dgot,

0,

55 2019 7&

By _ b0t —of = oot — oD v doet,
1" :
2 20'12

If o195 = 0, then B = 0 and 3] = 0, i.e., the credible scores fully reveal one dimension.'

The interpretation of a positive ratio 51/ is that a higher score is associated with a higher
state: [E[f;|m] is increasing in m for ¢ = 1,2. If, for instance, the score rates a movie by
considering its aesthetic quality, #; and entertainment value, 0, then a higher score indicates
that the movie has a higher expected value in both dimensions. If instead the ratio 31/, is
negative, the score can be interpreted as a relative measure. A higher score indicates that a

movie has a higher aesthetic value and less entertainment value.

When the correlation between the two dimensions is positive (012 > 0), the optimal linear
scoring strategy satisfies 3;/52 > 0, which corresponds to inducing positively correlated
actions by the receiver. When the correlation is negative, the best linear score is such that
p1/P2 < 0, while the worst is such that 3, /s > 0. It is worth noting that the worst score
could be a natural candidate for a credible score. For example, if movie critics use a rating
system where a higher rating indicates higher aesthetic or entertainment value but these two

dimensions are negatively correlated, then the credible score has poor welfare properties.

Finally, Corollary 1 establishes that revealing one dimension is credible when the two states
are uncorrelated. To understand this result, suppose that the sender uses a score that only re-
veals one dimension, say #;. Upon observing 6, the receiver will use the correlation between

the two dimensions to make some inferences about #,. This reasoning from the receiver in-

10The proof of the corollary is immediate, therefore omitted.
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troduces an incentive for the sender to lie about ¢; to potentially correct the inference on 6,.
The intuition is that an appropriately chosen marginal change in the score induces a marginal
loss of zero along the revealed dimension 6; and a positive marginal benefit along the other
dimension. This information spillover is similar to the result in Levy and Razin (2007) who
show that misalignment in one dimension can hinder communication in another dimension

where receiver and sender have aligned preferences.

4 Conclusion

We model a cheap-talk game with aligned preferences where the sender is constrained to use
a score in equilibrium. We show that this restriction introduces strategic frictions despite the
aligned preferences. These frictions can create a wedge between optimal and credible scores.

They also put structure on the shape of credible scores.

The multidimensionality of our model plays a key role for our results. In particular, if the state
were one-dimensional, any optimal score would be credible. In a one-dimensional model,
the score can be defined in multiple ways. Let © C R and let the sender send messages in

M C R. A score is a function s that satisfies

l. s:© —= M and

2. s satisfies IVP.

If either M = Ror M = {1,...,n} for some n € N, then any optimal score is credible. If
M = R, full revelation is possible so the optimal score is trivially credible. If M = {1, ...,n},
the result follows from the fact that for any given score and belief associated with it, the best
profitable deviation is also a score. Therefore, if this deviation is profitable, then this score
should have been optimal. This is the crucial difference with the two-dimensional case where

a profitable deviation could be a strategy that is not a score.

13
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A Proof of Proposition 1

We first establish that there always exists an equilibrium with two messages.

Lemma 2. There exist an equilibrium in which the sender chooses a strategy i : © — {1,2}.

Proof. As a first step, we establish that the function
v(at,a?) = / max{u(a',0),u(a?, 0)}dF
)

is continuous. To show this, we apply the dominated convergence theorem.

Take two converging sequences in R?, (o' a®") — (a!, ). Observe that

| max{u(a"", 0),u(@®",0)}] < ¢(ay™ — 01)* + (ap" — 0)".

For any converging sequence in R?, o — q, the function
(o = 01)" + (a5 — 02)" = (&07 + 03) — 2(d61a] + 205) + ¢(a)” + (a3)”

is dominated by an integrable function. This is the case, because the sequence («™) converges,
hence it is bounded and ¢(af)? + (af)? < M for some M > 0. Similarly, by the Cauchy-
dO1a7 + G085 </ M (02 + 03). Therefore,

Schwartz inequality,
[ max{u(a'™,0), u(a®", )} < d(ay"—01)*+(ay"—02)* < (907 +03)+2v M (07 +63)+ M,

for some M > 0. Because the variance of 0 is finite, the dominating function is integrable.

It is also clear that

max{u(a'™, 0), u(a®",0)} — max{u(a’,0),u(a? 0)}, for each 6.

Therefore by the dominated convergence theorem,

/max{u(al’",9),u(a2’”,9)}dF—>/max{u(al,G),u(aQ,H)}dF,
o o

and the function v(a!, a?) is continuous.
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As a second step, we establish that the following maximization problem has a solution:

12
alrggécﬂ{zv(a ) (2)

The function v(a', a?) is bounded above by 0 and therefore a supremum exists, say v*.
Moreover, setting ! = o? = E[f] guarantees a payoff of —¢ Var[f;] — Var[0,] and therefore
v* > —¢ Var[0,] — Var|[fs)].

If v* = —¢ Var[0,] — Var|fs,], then the supremum is attained by o' = o> = E[f] and therefore

a maximum exists.

Suppose instead that v* > —¢ Var[f;] — Var[f,]. Let (o', a*") be a sequence such that
v(ab™ a®™) — v*. We want to show that the sequence (o, a®™) is bounded.

Suppose it is not. If ||a*"|| — oo, then u(a®", ) — —oo for each 6.

If ||o®"|| — oo for both k = 1,2, then max{u(a’", ), u(a®", )} — —oo and therefore

v(ab™, a®™) — —oo and thus does not converge to v*.

If ||a*"|| — oo for only one k = 1,2, then a~"" is bounded and admits a convergent subse-
quence to a~*. Taking such subsequence, we get max{u(a®", 0), u(a="" 0)} — u(a™",0)

for each 6. Using the dominated convergence theorem in a similar way as above, we get
v(a®" a7y — / u(a™, 0)dF < —¢ Var[f,] — Var[fs)].
)

But the supremum v* > ¢ Var[#,]| 4+ Var[f,], a contradiction.

Therefore, the sequence (', a®™") is bounded and admits a convergent subsequence. By

continuity, a maximum then exists.

To conclude the proof, note that the maximization problem (2) gives the Perfect Bayesian
Equilibrium strategies of the common interest game where the sender chooses a strategy

p:© — {1,2} and the receiver chooses (a', a?) € R? x R? to maximize

maux/e 1u(0) = 1u(at, 0) + 1[u(0) = 2u(a?, )dF. (3)

o
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Proposition 1 is a corollary of Lemma 2.

Proof of Proposition 1. Note first that o' = a? = E[f] is not a solution of the maximization
problem (3), as any arbitrary partition of © and the best-reply to it would give strictly higher
payoffs. This means that the solution to (3) is a non-constant x. Moreover, the strategy
p o © — {1,2} trivially satisfies the IVP. Therefore, a credible score exists. U

B Proof of Remark 1 and Remark 2

Let s; denote the score that assigns a signal to (0,0) and (0, 1) and another signal to (1,0)
and (1,1). Let s, denote the score that assigns a signal to (0,0) and (1, 0) and another signal
to (0,1) and (1, 1). It is immediate that the optimal score belongs to the set {s1, 2, sp, Sa}-

Let the payoffs associated with sp, s4, s; and s, be respectively, up, ug4, u; and us so that:

Up = _2g(f(070)7 f(l’ 1));

Ug = _29(f(170)7 f(()? 1));

Uy = _g(f(oa O)7f(07 1)) —-9g f 170)a f(lv 1))7

up :=—g(f(0,0), f(1,0)) — g(f(0,1), f(1,1)),
where g(z,y) == L.

Lemma 3. If f(0,1) > f(0,0), then score ss is not optimal.

Proof. Suppose first that f(1,0) > f(1,1). Simple algebra gives:

Uy < Up =

g(f(070)7f(170)) - g(f<0’0)7 f(lv 1)) > g(f(070)7 f(17 1)) - g(f(O’ 1)7 f(lv 1))

As g, > 0, then f(1,0) > f(1,1) ensures that the left side of the last inequality is positive:
at the same time, f(0,1) > f(0,0) ensures that the right side is non-positive. We conclude
that the last inequality holds and indeed uy < up. So for f(1,0) > f(1,1), score ss is not

optimal.

Suppose now that f(1,0) < f(1,1). We proceed by contradiction. Suppose that uy >
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max{up, us}. Then

9(f(0,0), f(1,0)) +g(f(0,1), f(1,1)) < 29(f(1,0), f(0,1)), and
9(f(0,0), f(1,0)) + g(f(0,1), f(1,1

S~—
S~—
IN
[\
Q
—~
~
—~~
=
o
S~—
-
—~
—_
—_
SN—
SN—

These 2 inequalities imply that the sum of the right sides must be larger than the sum of the
left sides:

29(f(0,0), f(1,0)) +29(f(0,1), f(1,1)) < 29(f(1,0), £(0,1)) +29(/(0,0), f(1,1)) &
g(f(07 1)7 f(17 1)) - g(f(070)7 f(17 1)) < g(f(170)7 f(07 1)) - g(f(0’0)7f<170>>'

As g.y(-) > 0, then f(0,1) > f(0,0) and f(1,0) < f(1,1) together imply that the last
inequality is violated. This contradiction implies that us < max{up,us}. Hence, for
f(1,0) < f(1,1), score sq is not optimal. As f(1,0) # f(1,1) by assumption, the lemma
follows. ]

Proof of Remark 1. Lemma 3 establishes that if f(0,1) > f(0,0), then score ss is not opti-
mal. The same arguments can be used to show that also for f(0,1) < f(0,0) score s5 is not
optimal. As f(0,1) # f(0,0) by assumption, we conclude that score s, cannot be optimal.
The proof that s; cannot be optimal follows the same steps and is omitted. We conclude that

the optimal score is either sp or s4. The last part of the remark is immediate. O

Proof of Remark 2. Suppose parameters are such that s, is optimal (the argument is identical
if sp is optimal). Consider a PBE such that u(6) = s4. In such a PBE, p(0,0) = 1,
1(0,1) = p(1,0) = 2 and p(1,1) = 3; a(1) = (0,0), a(2) = (f(17£)(_1|_7?f)(071)7 f(17€)c§3_7]10)(071))
and a(3) = (1, 1). Note that u(«(3), (1,0)) = u(a(1),(1,0)) = —1 hence

u(@(2),(1,0)) = u(a(1), (1,0)) & u(a(2), (1,0)) = u(a(3), (1,0)) < ;Eé?; >V2 -1,
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while

fLO) 1
fO,1) 7 V2 -1

u(@(2),(0,1)) = u(a(1),(0,1)) © u(a(2),(0,1)) = u(e(3), (0,1)) <

A necessary condition for s, to be credible is therefore that

f(l,O) 1
£(0,1) € {ﬂ_l’ ﬂ—l} '

To conclude the proof it is sufficient to note that (a) this condition is also sufficient, as devia-

tions for the sender are unprofitable upon observing some 6 € {(0,0), (1,1)} and (b)

o e [a-rgs] = i e [a-r ]

C Proof of Proposition 2

For a score s, let a(m) = E[f|m], let M be the image of s and «(M) the image of a(-). Let
O(a) = {0 : a(s(f)) = a}. For any two points, z, y € R?, with a slight abuse of notation, let

[z,y] = conv{z,y}. (z,y) = [z, y] \ {z,y} and [z,y) = [z, 4] \ {y}. Finally, let £(z, y) be
the line connecting the points x, y.

The following lemma will be used throughout the proof.
Lemma 4. Let a,a’ € R% Ifu(a,0) > u(d',0), then u(a,0') > u(a',8') forall ' € [a, 0).
Proof. First assume that o’ ¢ ((a, ). Take §' € [a, ). Note that

—u(a,d) < —u(f,d)
= \/—u(e,a) < \/—u(O,a’) < \/—u((‘),@’) + \/—u(e’,a’), 4)

where the last inequality holds by the triangle inequality and is strict because 6, 6’ and a’ are
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not collinear. Note also that

V—u(0,0) +/—u(a,0) = /—u(a,0) < /—u(6,0) + /—u(®,a)
= —u(a,d) < —u(d, )

< ula,0) > u(d,0),

where the equality holds as a, 6 and ¢’ are collinear, and the first inequality follows from (4).

If instead ¢’ € {¢(a,0’), we must have o’ ¢ (a, 0], otherwise u(a,d) < wu(a’,0). But then,
either a € (a’,0") or 0 € (¢',a’). In both cases, u(a, ') > u(da’,§). O

We first consider the case in which all points in «(M) are isolated.

Lemma 5. If all points in «(M) are isolated, then s(0) is equivalent to a coarsely linear

score.

Proof. For any two a,a’ € a(M), let ©=(a,a’) := {6 : u(a,0) > u(a’,0)}. This set is a
half-space:

u(0,a) > u(f,d) & —201a16 + a2 — 205ay + a3 > —20,a¢ + afp — 205d, + af.

Similarly, let ©=(a,a’) := {0 : u(a,0) = u(a’,0)}. This set is a line.
If |a(M)| = 2, the set ©=(a, a’) determines the half-space defining a coarsely linear score.

Suppose there are three points a', a?, a® € a(M) and m* € a~*(a’) fori = 1,2, 3 such that

(i) m! < m? < m? and (ii) for any action ' € a(M) \ {a',a? a3}, every m € a~(d)

satisfies m > m? orm < m!.

Suppose that ©=(a', a?) and ©=(a?, a®) are not parallel. Then ©(a?) C O2(a* a') N
02(a?, a®) and the set ©=(a? a') N ©=(a?,a?) is a polyhedron with an extreme point at

0=(a?,a') NO=(a?, a®).

Clearly {a',a®} N ©=(a? a') N ©=(a?, a®) = 0. Moreover, we can draw a curve from a' to
a®in © \ (02(a? a') N ©=(a?, a?®)) consisting of straight vertical and horizontal lines. By

the IVP, there must be ¢’ on that curve such that s(f") = m?, a contradiction. O
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We consider next the case in which not all points in (M) are isolated.

Lemma 6. Let a be a limit point in «(M). Then int ©(a) = .

Proof. To establish that int©(a) = (), we proceed by contradiction. Suppose int©(a) # 0
and let € int©(a). Hence u(a,) > u(a’,0) for all @’ € a(M). Let a” be such that
u(a,0) = u(a”,0). Because § € int©(a), there is ¢ > 0, such that for all ' € B.(0),
0 € O(a). Therefore, (6,a"] N B.() is not empty. But by Lemma 4, §' € (0, a"] implies
u(a”,0") > u(a, ), contradicting ' € ©(a). Hence u(a,d) > u(a’,d) forall ' € (M) \

{a}.

Now we argue that int ©(a) is convex. Let 6, 60" € int©(a) and §” € [0, ¢']. First observe that
u(0,a) > u(0,d) & —201a1¢ + aid — 202a5 + a5 > —201a,¢ + aPed — 20.ay + ai. (5)

The inequality is preserved under convex combinations, so u(a, ") > u(a’,0”) for all @’ €
a(M) \ {a}, and thus 8" € O(a).

We show next that §” € int©(a). Take € > 0, such that B.(f) C intO(a). If " € B.(0),
we are done. Suppose 0" ¢ B.(f). Take two points ', 0* € B.(f) such that 0" ¢ [6",¢’] for
i =1,2,and 6 € (6',6?). This implies that 6, 0> and 0’ are not collinear.!! In that case, the
convex hull conv{#* 6% 6’} C O(a) has a non-empty interior and contains #”. Since 0" is
not on the boundary of conv{#', 6% '}, it is in its interior. There exists thus an > 0 such
that B, (0") C conv{6',6% 6’} C O(a). Therefore, " € intO(a), and int O(a) is convex.

If int ©(a) is not empty and convex, then the boundary of ©(a) has measure zero in R? (see
e.g., Lang, 1986). Moreover, since E[f|s(0) = m] = a forallm € {m’ € M : a(m') = a},
we have

E[0|0 € ©(a)] = a.

Therefore,
E[0]0 € ©(a)] = E[f|0 € intO(a)] = a,

which implies @ € int©(a). But then, because a is a limit point of «(M ), it means that

int©(a) intersects with «(M) at a point different than a, i.e., there is a point @’ € a(M)

"For example, two points whose segment [6*, %] C B, (#) is perpendicular to [0, §'] satisfy these conditions.
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and associated message m’ with a(m’) = @’ such that 0 > u(ad’,a) > u(a’,a(m’)) = 0. A

contradiction. Hence, int ©(a) = (). O

Lemma 7. Let a be a limit point in a( M \ {inf M, sup M }). Then ©(a) = £(0,0") for some 0
and 0'. Moreover, for all limit points a in o( M\ {inf M, sup M }), the lines ©(a) are parallel.

Proof. First, we show that there are 6 and ¢’ such that ©(a) C ¢(0,¢’).
From the proof of Lemma 1, |©(a)| > 1 and therefore O(a) # {a}.

Note that a cannot be an extreme point of conv O(a) as E[0]|0 € O(a)] = a and ©O(a) # {a}.
This means that there exist 6,0’ € O(a) such thata € [0, ¢'].

By Lemma 4, we can assume that for 7 € {0,0'} we have u(67,a) > u(6',a’) for all

a’ € a(M)\ {a}. Otherwise, we can just take a smaller interval contained in [0, 0'].

Suppose there is 6" ¢ ((6,0') such that §” € ©(a). Again, we can take 6" such that
uw(@”,a) > u(0",d’) for all a’ € a(M) \ {a}. As argued in the proof of Lemma 6, the set
conv{d,0', 0"} C ©(a). Since these points are not aligned, conv{#, ¢’ 6"} has a non-empty

interior and therefore int ©(a) has a non-empty interior. A contradiction.

To prove that O(a) = ¢(0, '), it is then enough to show that the set ©(a) is unbounded in
both directions. To see this, take some § € O(a) and let m = s(f). We can repeat the same

argument as in Lemma 1. Let m; and m satisfy m; < m < ms and pick ' and 62 such that

s(0') = m, and s(6?) = ma.

If ©(a) is bounded in one direction, we can find a curve consisting of straight horizontal and
vertical lines such that this curve does not intersect with ©(a). By the IVP, there must be
0’ on that curve such that s(¢’) = m and therefore #' € O(a), a contradiction. Therefore,

O(a) = €(0,0).

Let a and o’ be limit points of a(M \ {inf M,sup M }) such that a # a’. Because ©(a) N
O(a’") = 0, the lines O(a) and O(a’) must be parallel. O

Let A; be the set of isolated points in «( M) and A, be the set of limit points in (M ). Denote
by /s(a) the line that goes through a and has the same slope as O(a’) for some a’ € Aj.

Lemma 8. If there are some limit points in «(M), then all points in a(M ) are limit points.

Proof Let @T = UaeclAL@(a) - UaECIALés(a)'
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Take @ € argmax, ., SUpgeei u(a’,0) and 61 € arg max,cer u(a,d). The points a and 67
are the two points in A; and © with minimal (weighted) distance between the two. Moreover,
this distance is bounded away from zero either by the definition of isolated points if 0T € Ay,

or by the optimality of generating an action in Ay, for states arbitrarily close to 61 if 7 ¢ Aj.

Note that 67 is on the boundary of O, otherwise there is another point in ©F closer to a.
Take @ € clAy such that 87 € /,(a). Because the O is a union of lines, if 07 € /,(a)
is on the boundary of ©F, then /(@) is on the boundary of ©. We can therefore find a
sequence 6" ¢ OF with " — . By definition of isolated points, there is ¢ > 0 such that
u(a,a) < —e for all a € A;. But then for n large enough, 0" prefers to induce an action in

Ay, a contradiction. O]

Lemma 9. If there are some limit points in «(M ), any credible score is equivalent to a linear

score.

Proof. By Lemma 8, if there are some limit points in «(M/), then all points in «(M ) are limit

points.
If inf M ¢ M and sup M ¢ M, then by Lemma 7, the score is equivalent to a credible score.

To conclude the proof, we will show that inf M ¢ M and sup M ¢ M. Suppose it is not
the case and that m = min M exists. By Lemma 8, because there are some limit points in
a(M), a(m) is a limit point of (M ). Therefore, there is a neighborhood of a(m), denote
it ©F, such that for all § € O, it is the case that sup,c 4, u(f,a) > sup,c4, u(d, a) and for
alla € ©T N (M), itis the case that a € Ay. That is, types in O are closer to points in Ay,
than to points in A;.

Take a point in § € £,(a(m)) N OF. It cannot be that a(s(f)) € A; by definition of OF. It
also cannot be that a(s(f)) € AL \ {a(m)} as 6 € {;(a(m)). Therefore, a(s(f)) = a(m)
and there is more than one point in ©(a(m)). By a similar argument as above, it must be that
O(a(m)) C i(a(m)).

Let ©" and ©~ denote the two open half-spaces defined by the line /,(c(m)). Suppose
at € O and a= € O~ such that a™,a~ € ©T N a(M), i.., there are actions played in
equilibrium in Ay, that are on both sides of /;(a(m)). Note that {;(a™) C ©~.

Suppose without loss of generality that m™ = s(a™) > m~ = s(a™). By definition, m~ >
m. Take two points 7 € /;(a™), 6™ € O(a(m)) such that 0T > 6™ or 6T < ™. We
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can draw a curve between 61 and ™ that is entirely in ©F (except at ™) that consists only
of straight horizontal and vertical lines. By IVP, there must be 6’ on that curve such that
s(0) =m~.Butf € OF and ¢ (;(a~) = O(a"), a contradiction.

Therefore all § € ©F N a(M) are in the same half-space, say ©~. But types in O+ N Of
should prefer sending messages that induce a € Ay, contradicting that O(a) C ¢4(a). O

Proof of Proposition 2. Proposition 2 follows from Lemmas 5 and 9. [

D Proof of Proposition 3

Proof of Proposition 3. For any strategy s(6) = /30, we have the unconditional distribu-
tion over messages m induced by the score s, m ~ N(0,02) where 02 = B20? + B303 +
20182012 = ['YB. We also have that Cov(6;,m) = o045 = Bio7 + [j012. Therefore,
(015, 025) = 3.

The payoft of the sender can be rewritten, up to a constant, as

—a'®a + 24/ P6.

_ o8
= g

Therefore, the ex-ante payoff — given that the best-reply to m is a(m) is

— E[a(m)'®a(m) + 2a(m)'®0)

g’y X6 8’3

7vs" FeE" T s
[EION ]

- pzB

where the last equality follows from E[m?] = 'S8 and E[#m] = X3. The matrix LPY is
B'5PE8

— _E|

m®do|

positive semidefinite and symmetric. Therefore, is a generalized Rayleigh quotient

B'Ep
(see e.g., Parlett, 1998, Chapter 15) and the two stationary points of 2 ?;?5 are the eigenvec-
tors of X 71(XPY) = @Y, i.e., the points 3 such that there is A € R such that ®X3 = \f.

Moreover, as generalized Rayleigh quotients attain a maximum and a minimum, one of the

stationary points must correspond to a maximizer, the other to a minimizer.'?

121f the state had more than two dimensions, there would be more stationary points/eigenvectors; yet, it
would still be the case that one of the eigenvectors corresponds to a maximizer of the Rayleigh quotient, another
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The equilibrium problem can be expressed as follows. Given a belief that the sender uses a

B

linear strategy (3, the receiver chooses a(m) = ﬂ,z—zﬁm. In equilibrium, the sender chooses a

signal m for each realization of 6:

maX_B’Zm@ZBm N B'Ymdo
N T)E FYE

The objective function is quadratic in m and therefore the maximizer must satisfy the first

order condition:
L5'Yd 0
BUeY[

Therefore, any equilibrium strategy must satisfy

m = ('Y

B'Yd

. p'Es
ayans <Y

B =pLs = F5on B@zﬁ.

Take any equilibrium strategy /5. From the equilibrium condition, (3 is an eigenvector of ®3
B'EeY8
p'Es -

with eigenvalue

Conversely, take an eigenvector 3 of &Y, with eigenvalue . Plugging in the equilibrium

condition, we get

Y5 B'¥p
= /Z _— = )\ 6
where the equivalence follows from ®X3 = A\j and f'X® = A\p’. Equation (6) is satisfied
and therefore (3 is an equilibrium strategy. 0

to the minimizer.

26



	Introduction
	Related Literature

	Model
	Scores

	Analysis
	Value of Commitment
	Infinite State Space
	Normally Distributed State

	Conclusion
	Proof of Proposition 1
	Proof of prop:diagonal and rem:2
	Proof of Proposition 2
	Proof of Proposition 3

