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Abstract

A decision-maker can test a privately informed agent prior to making a decision. Instead of

choosing the test himself, the decision-maker requires the agent to choose the test from a menu.

By offering a menu, the decision-maker can use the agent’s choice as an additional source of

information. The decision-maker must accept or reject the agent who always wants to be

accepted. I show that the decision-maker does not benefit from commitment in this context.

Using this result, I show in several economic environments when the decision-maker benefits

from offering a choice of tests. When the set of feasible tests contains a most informative test,

I provide a necessary and sufficient condition for the introduction of a less informative test in

the optimal menu. I also show when the decision-maker benefits from a menu when tests vary

in difficulty and provide sufficient conditions for including a test in the menu.
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1 Introduction

In many economic settings, decision-makers (DMs) rely on tests to guide their actions. Universities
use admission tests as part of their application process, firms interview job candidates before they
hire them and regulators test products prior to authorisation. In these examples, the DM is deciding
whether to accept an agent and his preferences depend on some private information held by the
agent: the ability of the student, the productivity of the candidate or the quality of the product.
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Ideally, the DM would want to use a fully revealing test, but this is often not feasible and thus the
ability to learn from the test outcome alone is limited. However, there is an additional channel the
DM can learn from: he can offer a menu of tests and let the agent choose which test to take. The
DM can then use the agent’s choice as an additional source of information.

Depending on the setting, constraints on the testing ability can take many different forms.
For instance, a hiring firm is constrained by the amount of time and resources it can allocate to
the selection process; most universities have to use externally provided tests for their admission
procedures; and medicine regulatory agencies face both technological and ethical constraints when
authorising new drugs.

In this paper, I study the DM’s optimal design of a menu of tests and provide conditions under
which the DM learns from both the test choice and the outcome. I first provide a characterisation of
the optimal menu as a max-min problem and show that the DM does not benefit from committing
to an acceptance rule for any arbitrary domains of feasible tests. I then apply this result to natural
economic environments and provide conditions under which the DM benefits from offering more
than one test and conditions under which he does not. I consider the following two structures on
the feasible tests: the DM has access to a test more informative than all the others and the feasible
tests are ordered by their difficulty.1

More specifically, I study a DM who has to accept or reject a privately informed agent. While
the DM wants to accept a subset of types (the A-types) and reject the others (the R-types), the
agent always wants to be accepted. The domain of feasible tests is an exogenously given set of
Blackwell experiments. The DM designs a menu of tests, a subset of the feasible tests, from which
the agent chooses one. For example, in its admission procedure, a university can let a student
decide whether he takes a test or how many reference letters he submits. A regulator can let a
pharmaceutical company design the clinical trials when seeking authorisation of a new drug. After
observing the choice of test and its result, the DM decides whether or not to accept the agent.

In Theorem 1, I show that regardless of whether the DM is able to commit ex ante to an
acceptance rule, the optimal menu and strategies remain the same. Moreover, I provide an opti-
misation problem based on the model with commitment that delivers equilibrium strategies. This
result holds for arbitrary type structures and domains of feasible tests. Theorem 1 follows from a
max-min representation of the DM’s problem where the maximiser chooses the DM and A-types’
strategy and the minimiser chooses the R-types’ strategy.

In Section 4, I use Theorem 1 to determine which tests are part of the optimal menu in two
natural economic environments. In Section 4.1, I consider a domain of feasible tests containing
a dominant one, in the sense of Blackwell’s (1953) informativeness order. One example of this

1I consider a third environment where each test can identify only one dimension of the agent’s private information
in the online appendix C.
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environment is a university considering whether to allow students to opt out of an admission test
like an interview or a standardised test when applying. Under this approach, the university is
effectively offering a menu containing the admission test and an uninformative test. In the same
context, universities sometimes allow students to submit an additional, optional, reference letter.
The more reference letters submitted, the more informative the test is.2

The first result in that environment is that the dominant test is always part of an optimal menu.
In the example above, it means that the university should always allow students to take the ad-
mission test or submit the optional reference letter. I then examine the case of binary tests. By
interpreting one of the two signals as a high signal, a binary test allows for ranking types by their
performance on a test. I introduce a property of tests that is necessary and sufficient to determine
whether a dominated test should be included in the optimal menu. I say that a test is A-types

unreliable if some A-types perform worse than an R-type but others perform better and there are
sufficiently many A-types that do not perform well on the test. Intuitively, A-types unreliability
has two components. The first is a requirement that some A-types perform well on the test while
others don’t. The second is a quantitative requirement that enough bad performers be A-types.
Conversely, a test is not A-types unreliable if, for example, all A-types have a higher performance
than all R-types but also if all A-types have an intermediate performance on the test. It is worth
noting that A-types unreliability can hold even if the test is a good predictor of the agent’s quality.3

In Proposition 1, I show that if the dominant test is A-types unreliable then it is always optimal
to include a dominated test in the optimal menu. In fact, I show that whenever a test is A-types un-
reliable, it is always optimal to include another test in the menu, whatever that other test might be.
On the other hand, if the dominant test is not A-types unreliable, then offering only the dominant
test is optimal. Proposition 1 helps rationalise the common practice of making parts of an applica-
tion process optional: if there is a concern that some good candidates would not perform well on
the optional parts, offering a choice could in fact be optimal. By offering a choice, the university
allows these good candidates to not submit a test where they perform poorly and are punished
for this bad performance. This intuition resonates with the advice given to prospective candidates
to not submit optional material if it ‘may not highlight a strength [...] or be a great opportunity

[...] to share more’ from the University of Chicago (2024b) or to favour ‘quality over quantity’

2Some prominent examples of these practices: the University of Chicago allows candidates to submit an optional
letter of recommendation and a video profile (University of Chicago, 2024a), Stanford University offers an optional
interview in its application process (Stanford University, 2024) or Microsoft allows candidates to submit up to 10
optional attachments, including work samples, in their applications (Microsoft Careers, 2024).

3In the context of university admissions, A-type unreliability might hold when for some good students, it is hard
to get good results in admission tests. For example, there are concerns in the popular discourse that students from
under-represented groups or from smaller, less connected institutions may face difficulty obtaining strong reference
letters, e.g., Todd (2021), Hiribarren (2020). In that case, a bad reference letter might signal either low quality or no
access to a good reference letter writer.
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when choosing whether to submit an optional recommendation letter (from NYU admission officer
Saviano, 2020).

From a technical point of view, one proof strategy to show that a singleton menu is optimal is
by showing the existence of a unique equilibrium payoffs that correspond to the equilibrium where
only the dominant test is chosen. In a sense, these results extend unravelling-type arguments (e.g.,
Milgrom, 1981, 2008) where instead of unravelling to the most revealing evidence, the strategies
unravel to the dominant, but possibly noisy, test. The equilibrium forces concentrate choices on the
most informative test but potentially reveal less information than if types would choose different
tests.

In Section 4.2, I consider a one-dimensional environment where feasible tests are ordered by
their difficulty, instead of by how informative they are. For example, a regulator protecting con-
sumer welfare could mandate labelling to inform consumers about a product’s characteristics and
decide which certifiers, varying by their stringency, a firm can use.4 Or the DM could be a reg-
ulator deciding how hard a compliance test should be before authorising a product. To this end,
I define and characterise a new notion of difficulty to compare experiments. This notion captures
that varying the difficulty of a test changes which types are better identified: a more difficult test
is informative when it is passed, because only high types are likely to produce a high grade, but it
is less informative when it is failed. I show again that a singleton menu is optimal. In this case, it
is possible to sustain an equilibrium with more than one test, but satisfying the agent’s incentive
constraints is so demanding that the DM is better off offering only one test. Going back to the con-
sumer product market application, this result implies that, when it comes to mandatory labelling,
firms should not be able to choose how difficult the certification they apply for is.

Finally, I consider the following extension to the baseline model. I extend the strategy space of
the agent by allowing non-verifiable communication and costless unobserved effort. I first extend
the max-min characterisation to that environment. Using that result, I explore in a setting similar
to Section 4.1 with a Blackwell dominant test, whether communication helps the DM and how
communication interacts with unobserved effort. I show that whenever the agent can exert effort,
communication alone cannot improve the DM’s payoffs, but offering a dominated test can. On the
other hand, when the agent cannot influence the outcome of the test, communication can strictly
improve the DM’s payoffs.

The Online Appendix contains an additional application of the characterisation result to multi-
dimensional type spaces and an extension introducing the possibility of random allocation to tests.

4For example, the EU mandates energy labels on products such as washing machines, light bulbs or tyres. Varying
the difficulty could correspond to varying the threshold to get a ‘high grade’.
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Relation to the literature

In this paper I study a model of information provision by a privately informed agent through the
choice of a test. Formally, my model is most closely related to the mechanism design with ev-
idence literature where an agent can bring verifiable information to influence the allocation in a
mechanism (Green and Laffont, 1986; Bull and Watson, 2007; Deneckere and Severinov, 2008).
In particular, Glazer and Rubinstein (2006) study a similar model where the agent can present
only deterministic evidence about his type. In Section 3, I characterise the optimal mechanism
and unlike most of that literature, I allow for arbitrary domains of feasible tests that include non-
deterministic tests.5 Introducing stochastic tests allows me to study how the statistical properties
of the tests interact with the strategic choices of players in previously unexplored economic envi-
ronments, for example environments containing a most informative test and tests ordered by their
difficulty. It also leads me to identify new conditions on tests, such as A-types unreliability, to
determine the optimal menu. These results rationalise when DMs would offer a choice of test, as
in the case of optional items in university admission procedures, and when they would not.

A common theme in this literature is that the DM might not need commitment to the allocation
rule when designing the optimal mechanism; see, e.g., Glazer and Rubinstein (2004); Glazer and
Rubinstein (2006); Ben-Porath et al. (2019); Ben-Porath et al. (2021). In Theorem 1, in addition
to showing that commitment has no value, I also show that equilibrium strategies are the outcome
of a max-min problem.6 This formulation is useful to further characterise the strategies used at the
optimum.

Another important focus of the literature on strategic disclosure is finding conditions under
which all information is revealed in equilibrium; see, e.g., Grossman (1981), Milgrom (1981) and
for more recent contributions, Hagenbach et al. (2014) or Carroll and Egorov (2019). In my model,
if full information is possible, it is optimal, but I also characterise the optimal choice of test when
full information is not attainable.

I also note that there are formal connections between this paper and the papers featuring com-
munication with verification, some already cited (e.g., Glazer and Rubinstein, 2004; Carroll and
Egorov, 2019).7 Silva (2024) studies an environment with similar payoffs where the agent can

5Evidence is a particular kind of test that takes a deterministic form: the agent can provide evidence that he
belongs to a certain subset of types. Another difference with modelling information with evidence is that not all types
can participate in all tests, i.e., they cannot provide evidence they do not have. I discuss the relation between these two
modelling approaches in more detail in Section 2.1. For examples of mechanism design papers with nondeterministic
tests, see Ball and Kattwinkel (2022) and Ben-Porath et al. (2021).

6This result depends on the payoff function assumed. Ben-Porath et al. (2019) consider payoff functions that are
more general than the ones considered here but restrict attention to normal evidence structures (Bull and Watson, 2007;
Lipman and Seppi, 1995). Ben-Porath et al.’s (2021) result on the value of commitment implies this one but they do
not provide a characterisation of the equilibrium strategies. See also Sher (2011) and Hart et al. (2017) for results on
commitment in mechanism design with evidence using different payoff functions.

7There is also a large literature on mechanism design with costly verification; e.g., Townsend (1979), Baron and
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communicate to a DM that has access to a fixed test. Here, the DM can decide which tests the
agent can choose from. He shows that monotonicity of the test can lead to no value of communi-
cation in the same way that monotonicity makes introducing a dominated test suboptimal (see also
Weksler and Zik, 2022, for a related model).

The other branch of literature my paper relates to is information design without sender commit-
ment. In these papers, the agent and the DM correspond to the sender and the receiver, respectively.
In particular, this paper is closer to models characterising receiver-optimal tests where the sender
can choose which test to take. In Rosar (2017) and Harbaugh and Rasmusen (2018), the receiver
designs a test where a privately informed agent can either take the test, possibly at a cost, or take
an uninformative test. In these papers, the receiver flexibly designs a test given that the sender has
a choice. In my paper, the receiver designs the choice, i.e., the menu, given the restrictions on the
feasible tests.

Other papers consider the receiver-optimal design of tests where the sender’s action is partially
observed or unobserved, e.g., DeMarzo et al. (2019), Deb and Stewart (2018), Perez-Richet and
Skreta (2022) or Ball (2021) (note that (Perez-Richet and Skreta, 2022) also consider observable
actions). In a model of dynamic task allocation, Deb and Stewart (2018) share a similar concern
about whether the optimal task should be the most informative. The key strategic friction in their
model is that the agent can shirk on the task. In my paper, the design of the optimal menu also
has to take into account the strategy of the sender; however, unobservable actions fundamentally
change the sender’s incentives and thus how information is revealed. I discuss in Section 2.1 which
results would still apply if the outcome of the tests depends on the agent’s unobserved actions and
provide a framework and additional results in Section 6 where this possibility is allowed.8

Finally, there are numerous papers concerned with the design of tests and selection procedures
whose themes overlap with this paper’s. In a complementary paper, Dessein et al. (2023) show that
when the agent can observe the test results before submitting them, test-optional policies cannot be
justified from an informational point of view. In contrast, in this paper, the agent does not know the
outcome when choosing the test. Whether the test result is observable depends on the economic
application considered. This is the case when test scores are automatically sent to universities,9

they use interviews, or the content of a reference letter is not revealed to the student. On the other

Besanko (1984), Ben-Porath et al. (2014), and Halac and Yared (2020). In these papers, the principal can verify some
agents’ types at a cost. Here testing is free but constrained to be from a set of feasible tests.

8There are also papers studying sender-optimal tests when the sender cannot fully commit to reporting the test
correctly, e.g., Nguyen and Tan (2021), Lipnowski et al. (2022) or Koessler and Skreta (2022). In Boleslavsky and
Kim (2018) and Perez-Richet et al. (2020), the sender can commit but there is a third agent whose effort determines,
respectively, the state of the world or the Blackwell experiment actually performed.

9Some examples are the Law National Aptitude, Mathematics Admissions test or the Sixth Term Examination
Paper Mathematics tests used for undergraduate admissions in the UK or the Dental Admission Test and Optometry
Admission Test in the US.
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hand, some popular standardised tests like the SAT or ACT do not automatically send test scores
to universities. Di Tillio et al. (2021) compare the informativeness of selected data to randomly
generated data. Specifically, they study under which condition a DM would prefer observing the
n highest realisations of a data generating process over n random draws. They apply their results
to questions similar to this paper like ‘Should a candidate in an admission process select which
questions they want to answer or should the examiner select the questions?’ As in Dessein et al.
(2023), a key modelling difference is that the agent knows the realisation of the test outcome
when selecting what to report. Krishna et al. (2022) model the university selection process as a
contest and show that coarsening grades can be Pareto efficient. Ely et al. (2021) study the optimal
allocation of tests from a restricted set to agents with observable characteristics.

2 Model

There is a DM and an agent. The agent has a type θ ∈ Θ, |Θ| < ∞, with a common prior µ ∈ ∆Θ.
The prior is always full support unless specified otherwise. The set of types is partitioned in
two: Θ = A ∪ R, A ∩ R = ∅. The type is private information of the agent. The DM must
take an action a ∈ {0, 1}, that is, accept or reject. The utilities of the DM and the agent are
v(a, θ) = a

(
1[ θ ∈ A] − 1[θ ∈ R]

)
and u(a, θ) = a, respectively. That is, the DM wants to

accept agents in A and reject agents in R. The agent always wants to be accepted. The analysis
is virtually unchanged by allowing for DMs with utility functions of the form v(a, θ) = aν(θ) for
some ν : Θ → R.10 When the action space is binary and all agents prefer a = 1 to a = 0, assuming
that v(a, θ) = aν(θ) is without loss of generality (see Ben-Porath et al., 2021, for a discussion).

There is a finite exogenous set of tests T ⊆ Π := {π : Θ → ∆X}, where X is some finite
signal space. The conditional probabilities of test t are πt(·|θ). The set T captures the restriction
on the DM’s testing capacity. He can perform only one test from that set. A menu of tests is a
subset of the feasible tests, M ⊆ T .

For each menu M, the timing of the game is as follows.

1. The agent learns his type θ.

2. The agent chooses a test from the menu, the agent’s strategy is denoted by σ : Θ → ∆M.

3. A signal x is drawn according to the realised test πt(·|θ).
10To see this, observe that there is implicitly a weight on accepting the type which is the prior µ. If there is

an additional weight ν, we can always transform the prior to take into account these extra considerations: µ̃(θ) =
µ(θ)|ν(θ)|∑
θ µ(θ)|ν(θ)| and conduct the analysis using the prior µ̃. This has been pointed out by other papers using this kind of

preferences, e.g., Glazer and Rubinstein (2004) or Deb and Stewart (2018).
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4. The DM chooses an action based on the realised test choice and outcome; the acceptance
probability is denoted by α : M×X → [0, 1].

The solution concept is weak Perfect Bayesian Equilibrium of the game induced by the menu
M. There are generally many equilibria and I focus on the DM-preferred equilibrium.11 For
example, for any menu where two tests are offered, there are always equilibria where all types
choose the same test, akin to a babbling equilibrium in a cheap-talk model. This selection is also
motivated by the nature of the results in this paper. I focus on possibility and impossibility results:
when it is optimal to offer more than one test and when it is not. Looking at the DM-preferred
equilibrium allows me to establish when it is possible to benefit from offering more than one test
and when it is impossible.

Notation: For any α, denote the probability of type θ to be accepted in test t by pt(α; θ) ≡∑
x α(t, x)πt(x|θ). I also write (α, σ) ∈ wPBE(M) if there is a belief µ̃ such that (α, σ, µ̃) is a

weak PBE in the subgame when the menu is M.
The optimal design of menu solves

V = max
M⊆T

max
α,σ

∑
θ∈A

µ(θ)
∑
t∈M

σ(t|θ)pt(α; θ)−
∑
θ∈R

µ(θ)
∑
t∈M

σ(t|θ)pt(α; θ)

s.t. (α, σ) ∈ wPBE(M)

The inner maximisation problem selects, for a fixed menu, the DM and agent strategy to maximise
the DM’s payoff, under the constraint that they are equilibrium strategies. The outer maximisation
problem selects the best possible menu for the DM. I say that the DM’s payoffs are higher in menu
M than in M′ if the DM’s payoff in the DM-preferred equilibrium in M is higher than in M′.

2.1 Discussion

Test restriction: The exogenous set of tests T can capture different constraints on the DM’s testing
capacity. It could be a purely technological constraint; e.g., when choosing amongst standardised
tests, universities can choose only from an exogenously given set of tests from test providers.
The constraint can also be on some properties of the tests that can be used; e.g., T ⊂ {π : π

has the MLRP}. Finally, it could come from a capacity constraint in the information process-
ing/acquisition abilities of the DM: e.g., a limited number of sample sizes a researcher can collect,
a maximum number of reference letters a university can process or there could be a cost func-
tion associated with each experiment C : Π → R and a maximum cost the DM can pay c ∈ R,
T ⊂ {π : c ≥ C(π)}.

11The results would be exactly the same if I would take DM-preferred Sequential Equilibrium (Kreps and Wilson,
1982) as my solution concept. I comment on this in more detail in the discussion of Theorem 1.
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Non-verifiable communication: In the first sections of the paper, I do not explicitly model
non-verifiable communication. In many applications, communication can be verified or the agent
can be liable for lies: for example, when the agent is a regulated firm or a candidate for employ-
ment. In these cases, no information transmission can be pure cheap-talk. It is also motivated by a
transparency or accountability constraint on the DM: using cheap talk means that two observation-
ally equivalent candidates, i.e., choosing the same test and having the same outcome, are treated
differently. Treating observationally equivalent candidates similarly is in line with requirements
that selection procedures or regulatory decisions should be based on objective criteria.12 I discuss
how to integrate non-verifiable communication and its robustness in Section 6.

Effort: The outcome of the test is independent of the agent’s action. The model would
go unchanged if effort were costless and observable because it could be deterred with off-path
beliefs. I explore the possibility for costless and unobservable effort in Section 6. Note also that if
signals are ordered and the DM uses a cutoff strategy, as in many natural applications, a reasonable
assumption on effort would be that the higher the effort, the likelier a high signal. In this case, the
agent would always have an incentive to provide high effort. See Deb and Stewart (2018) and Ball
and Kattwinkel (2022) for models that take into account both asymmetric information and moral
hazard in a model of testing.

Relation to models with evidence: The model can be interpreted as a generalisation of models
with evidence. The idea of these models is that each type is endowed with a set of messages that
only a subset of types can send. Formally, an evidence structure is a correspondence E : Θ ⇒ M

for some finite set of messages M . Thus, type θ can send messages only in E(θ). We can capture
these models in the following way. The set of feasible tests has X = {x1, x0} and for all m ∈ M ,
πm(x1|θ) = 1 ⇔ θ ∈ E−1(m). Thus a test m perfectly reveals whether θ is in E−1(m) or in
Θ\E−1(m). In a model with evidence, a type θ can never reveal he is in Θ\E−1(m) for a message
m /∈ E(θ). However, in the testing model, we can always incentivise any type to not choose such
a test by setting α(x0,m) = 0 for all m. This strategy could be justified because (x0,m) would
always be off-path. On the other hand, I do not allow the agent to withhold evidence after seeing
its realisation as in Dye (1985).

2.2 Example: Opting out of an admission test

Suppose a university uses some test for admission and that there are three types of students: A =

{A1, A2} and R = {R1}. Consider the set of feasible tests T = {t, ∅} where ∅ is an uninformative

12For example, CIPD, the UK’s professional body for HR and people development, recommends the use of objec-
tive criteria when making hiring decisions (CIPD, 2022). In the EU, regulatory authorities should respect the principle
of equal treatment that ‘requires that comparable situations must not be treated differently [...] unless such treatment
is objectively justified’ (Sia and Gohari, 2024).
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test. The test t is described by X = {x0, x1} and

πt(x|A1) =

1/2 if x = x0

1/2 if x = x1

πt(x|R1) =

1/3 if x = x0

2/3 if x = x1

πt(x|A2) =

0 if x = x0

1 if x = x1

For the purpose of this example, suppose that µ(A1) < 2
3
µ(R1) < µ(A2). The lessons from

this example can be extended to arbitrary priors.
This example can be interpreted as follows. The test t is a test a university uses to get infor-

mation about students, like an interview, a reference letter or a standardised test. The signal x1

represents a high grade and x0 a low grade. A common concern about these standardised tests or
interviews is that they can be too easily gamed by unobserved test preparation or fail to identify
good students in some categories of the population (see, e.g., Academic Senate UC, 2020, for a
report on standardised tests in the University of California system). Similarly, there is a concern
that unequal access to good reference letter writers makes it possible that good students get bad
recommendation letters (Todd, 2021; Hiribarren, 2020). The parametrisation of the test t captures
these phenomena. While A2 and R1 are naturally ordered, in the sense that A2 is more likely to
have a good grade than R1, A1 corresponds to a type of student that the university wants to accept
but generates a lower grade than R1. The prior could be obtained based on some other informa-
tion provided by the student, e.g., after having observed transcripts or socioeconomic background.
This parametrisation, however, still captures that a high grade is predictive of a high-quality stu-
dent, in line with the finding from the education literature that standardised tests are predictive of
good educational outcomes even after conditioning on various observables such as socioeconomic
background or race. Adding ∅ to the menu allows the student to opt out from the admission test.
Another interpretation of this example is that the test is a recommendation letter and adding ∅
makes that recommendation letter optional. The parametrisation then captures the possibility that
A1 is a good student but with no connection to professors or teachers that could write a good letter
for them.

When only t is offered: The information structure and prior deliver the following best response
when only t is offered,

α(x, t) =

0 if x = x0

1 if x = x1

10



The acceptance probabilities of each type are then

pt(α;R1) = 2/3 pt(α;A1) = 1/2 pt(α;A2) = 1

When both t and ∅ are offered: Consider the equilibrium with the following strategies of the agent:

σ(∅|R1) =
µ(A1)

µ(R1)
σ(∅|A1) = 1 σ(t|A2) = 1

The student R1 mixes between the two tests, t and ∅, whereas A1 chooses ∅ with probability
one and A2 chooses t with probability one. If all types play a pure strategy, it is not possible to
maintain an equilibrium where both tests are chosen. If that is the case, there is a test that is chosen
only by an A-type and in equilibrium the DM must accept with probability one after any signal in
that test. Thus R1 mixes in equilibrium to make the menu {t, ∅} credible.

Given the agent’s strategy, the DM’s strategy after t remains the same as before. When the DM
observes ∅, he is indifferent between accepting and rejecting. By accepting with probability 2/3,
R1 is indifferent between ∅ and t. The resulting acceptance probabilities are

E[p(α;R1)] = 2/3 p∅(α;A1) = 2/3 pt(α;A2) = 1

Types R1 and A2 have the same acceptance probabilities as before but A1 is accepted with
strictly higher probability. Therefore, allowing to opt out strictly increases the DM’s payoffs.
Intuitively, type A1 is a student that is poorly identified by the admission test. Giving the option of
opting out allows that student to differentiate himself from the other types without benefiting the
bad student R1.

3 Characterisation of the optimal menu

An important step in the characterisation of the optimal menu is to show that we can use the case
where the DM can commit to a strategy to characterise the DM-preferred equilibrium. I also show
that in the DM-preferred equilibrium, the A-types play a pure strategy.

Abusing notation, I will abstract momentarily from the choice of menu and let σ : Θ → ∆T ,
i.e., the agent’s strategy is a choice over all feasible tests and α : X × T → [0, 1] the strategy of
the DM at any given test. Denote by σΘ′

=
(
σ(·|θ)

)
θ∈Θ′ for any Θ′ ⊆ Θ the vector of strategies

for a subset of types. Using this notation, σA is the vector collecting the strategies of A-types and
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σR the vector of the strategies of R-types. I also use the following notation for the DM’s payoffs:

v(α, σA, σR) ≡
∑
θ∈A

µ(θ)
∑
t∈T

σ(t|θ)pt(α; θ)−
∑
θ′∈R

µ(θ′)
∑
t∈T

σ(t|θ)pt(α; θ′).

I call the game with commitment the game where the DM can commit to a decision rule α

before observing the choice of test and the outcome. I say that the DM does not benefit from
commitment if the payoffs from the DM-preferred equilibrium are the same in the game with
commitment and in the original game.

I first observe in the following lemma that the DM’s value from the game with commitment is
obtained from a max-min problem.

Lemma 1. The DM’s payoff in the DM-preferred equilibrium in the game with commitment is

max
α,σA

min
σR

v(α, σA, σR). (1)

All proofs are relegated to the appendix, appendix A.
To understand Lemma 1 better, first note that we can rewrite (1) as

max
α

[
max
σA

∑
θ∈A

µ(θ)
∑
t∈T

σ(t|θ)pt(α; θ)−max
σR

∑
θ′∈R

µ(θ′)
∑
t∈T

σ(t|θ)pt(α; θ′)
]
.

That is, it corresponds to the problem of finding the best strategy α when the agent chooses a test
to maximise his payoffs given α. Because the interests of the A-types are fully aligned with the
DM’s, they try to maximise his payoffs whereas the R-types have opposite interests and thus try to
minimise the DM’s payoffs. Unlike the original DM problem, the DM can commit to α and thus it
does not need to be a best reply.

We can use this characterisation to get the following result for the game without commitment.

Theorem 1. For any (α, σA) ∈ argmaxα̃,σ̃A minσ̃R v(α̃, σ̃A, σ̃R), an optimal menu is

M = ∪θ∈A suppσ(·|θ).

Additionally, for any σR ∈ argminσ̃R maxα̃ v(α̃, σ
A, σ̃R), (α, σA, σR) are the strategies in the

corresponding DM-preferred equilibrium.

Moreover,

• The DM does not benefit from commitment.

• There exists a DM-preferred equilibrium where σA is in pure strategies and therefore |M| ≤
|A|.
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Theorem 1 provides two important tools to characterise the optimal menu. The first one is
to show that there is no value of commitment and to provide a maximisation problem that gives
exactly which strategies are used in the equilibrium without commitment. This is a powerful tool
to test equilibria and to establish whether a test should be part of an optimal menu. Indeed, it is not
necessary to compare equilibria across menus to establish that an equilibrium (α, σ) is not optimal.
It is enough to find an alternative DM and A-types strategy (α̃, σ̃A) such that

min
σR

v(α, σA, σR) < min
σR

v(α̃, σ̃A, σR)

to show that (α, σ) does not constitute an optimal equilibrium without having to worry whether
(α̃, σ̃A) is part of an equilibrium strategy. Importantly, Theorem 1 also allows to establish that a
test is part of an optimal menu in equilibrium, even when it is not strictly optimal to add this test.
This observation will be important in the next section, where I will show that some tests are part
of the optimal menu and then rely on their properties to characterise equilibria.

That commitment has no value in this game comes from the max-min structure of the charac-
terisation. The result relies on the fact that for any strategy of the A-types, the DM and the R-types
play a zero-sum game. Therefore, if this game has an equilibrium, ‘max-min=min-max’ and the
order of moves does not matter in this game: the DM has the same payoffs if he moves first or last.

This observation also implies that the max-min characterisation can be used to extend the
result beyond a set up with finite action and payoffs linear in (mixed) strategies. It is for example
straightforward to extend the result to a setting where the DM is constrained to use increasing
strategies, i.e., X ⊂ R and x > x′ ⇒ α(x, t) ≥ α(x′, t). This set is compact and convex
in R|X| × R|T | and therefore the minimax theorem applies. As a further proof of concept, in
appendix E, I show that the result also extends to a case where the DM is constrained to play a
cutoff strategy, i.e., X ⊂ R and α(x′, t) > 0 ⇒ α(x, t) = 1 for x > x′. The set of cutoff
strategies is not convex and I use the existence result of Milgrom and Shannon (1994) relying on
monotonicity of best-reply correspondences to show equilibrium existence.

The max-min characterisation illustrates what will be the key requirements to create and sustain
separation in equilibrium. Under the max-min structure, the A-types are the ones that move first.
Therefore, a prerequisite for having separation is that some A-types have an incentive to choose
a different test. This deviation is profitable only if the minimising behaviour of R-types does not
make this deviation unprofitable. Intuitively, giving R-types but not A-types an incentive to deviate
is not an effective strategy, because this strategy would simply reveal they are types the DM wants
to reject, which is not sustainable in equilibrium. On the other hand, giving A-types an incentive
to deviate can be profitable for the DM because their payoffs align.

One can also interpret the commitment result as a hierarchy over sources of learning. The DM
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has two sources of information, the ‘hard information’ from the test results and the endogenously
created information from the choice of test. When the DM can commit to a strategy, he can
‘sacrifice’ payoffs from the test result by not best replying, in order to create separation of types
through the test choice. By showing that the DM always best replies, even when he can commit, I
show that he should always prioritise the hard information over creating endogenous information
through the test choice.

I also note that the possibility of committing to a menu is not important for the result. Indeed,
if more tests are offered, the agents can be discouraged from taking them with the right off-path
beliefs. This is possible as long as we focus on a DM-preferred equilibrium.

The second tool is to establish that the size of the menu is bounded by the number of A-types.
This observation limits the number of tests we need to consider. An immediate corollary is also
that if there is only one type the DM would like to accept, an optimal menu is to use only one test.
In particular, this result shows that in a binary-state environment, the optimal mechanism uses only
one test, no matter what the available set of tests is.

Corollary 1. Suppose |A| = 1. Then for any T , there is an optimal menu that uses only one test.

Ben-Porath et al. (2021) also show that there is no value of commitment in a setup where prefer-
ences take a similar form as here.13 One advantage of Theorem 1 is that it provides a maximisation
problem that delivers equilibrium strategies. Knowing that there is no value of commitment to
α would, for example, not be enough to establish that it is without loss to consider pure strate-
gies from A-types or to establish that a test is part of an optimal menu in equilibrium when it is
not strictly optimal to add it. Second, as mentioned, the max-min characterisation can be used to
extend the result beyond a set up with finite action and payoffs linear in strategies.

Sequential Equilibrium. The equilibrium derived in Theorem 1 is sustained with off-path be-
liefs that put probability one on some θ ∈ R. If the solution concept is DM-preferred Sequential
Equilibrium (SE) (Kreps and Wilson, 1982), Theorem 1 would also hold. If all tests have full
support, then all signals are on-path and weak PBE and SE coincide. If some tests do not have full
support, I can always assume that the trembling of R-types is more likely than the trembling of
A-types. Then, the DM’s off-path beliefs after the pair (t, x) are that the type is an A-type if the
support of A and R-types do not coincide and that the type is an R-type otherwise. This observa-
tion guarantees that if an A-type finds it profitable to deviate in the problem without commitment,
then he would also find it profitable to deviate in the problem with commitment.

13The functional form they identify, semi-aligned preferences, is more general than what I assume here. The proof
of Theorem 1 extends to semi-aligned preferences.
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4 Economic environments

4.1 Environments with a Blackwell dominant test

It is common in applications that the DM has access to a most informative test because, for exam-
ple, the choice is simply between a test and opting out of it. This is the case if universities make
some parts of their admission procedures optional: for example, optional interviews, reference let-
ters, tests, etc. Having a most informative test can also come from the structure of the constraints.
For example, the DM could have a time budget to conduct an interview. The more time the inter-
view takes, the more informative it is. Another possibility is that the DM can easily make a test
less informative by simply not conducting part of the test; e.g., if a test is composed of a series of
questions, the DM can ignore some of them.

I will use Blackwell’s (1953) notion of informativeness.

Definition 1 (Blackwell (1953)). A test t is more informative than t′, t ⪰ t′, if there is function

β : X ×X → [0, 1] such that for all x′ ∈ X ,
∑

x β(x, x
′)πt(x|θ) = πt′(x

′|θ) for all θ ∈ Θ and for

all x ∈ X ,
∑

x′ β(x, x′) = 1.

I call a test t a dominant test if t ⪰ t′ for all t′ ∈ T . If a test is more informative than another,
then in any decision problem, i.e., a pair of utility function and a prior, using the more informative
test yields a higher expected utility (Blackwell, 1953). A first important fact we will record here is
that if there is a most informative test, then it is part of an optimal menu.

Lemma 2. If there is t ∈ T such that t ⪰ t′ for all t′ ∈ T , then there is an optimal menu that

includes t.

This lemma follows from the max-min characterisation of Theorem 1 and the properties of
dominant tests. Indeed, if we find a menu where the dominant test t is not included, we can modify
the DM’s strategy such that one A-type is accepted with higher probability than the test he is
choosing, say t′, and all R-types are accepted with a lower probability than in t′. This new strategy
is either a deviation or a new maximum in the max-min problem. Note that if we knew only that
commitment had no value, we would not be guaranteed that t would be part of an optimal menu.

As we have seen in the admission test example in Section 2.2, it can be optimal to add a strictly
less informative test in the optimal menu. I show now when the example of Section 2.2 generalises
or does not. That is, I provide conditions under which it is optimal to include a dominated test and
conditions under which it isn’t.

I first focus on a binary signals environment, X = {x0, x1}. I will use two properties of binary
signals tests. First, when signals are binary, we can define a complete order over types for each test.
In this order, types are ranked by their likelihood of generating signal x1: θ ≥t θ

′ ⇔ πt(x1|θ) ≥
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πt(x1|θ′). Given that tests are binary, this is equivalent to ordering types by the likelihood ratio,
π(x1|θ)
π(x0|θ) .

The second property I use is that when signals are binary, the DM’s strategy is automatically
monotonic in the signals, i.e., either α(x1, t) ≥ α(x0, t) or α(x1, t) < α(x0, t). In online ap-
pendix F, I show how the results of this section extend to environments where these two properties
are satisfied, i.e., types can be ranked by their likelihood ratios and strategies are increasing.14

The following property will be key to establish when using a dominated test is optimal.

Definition 2 (A-types unreliable test). Let X = {x0, x1}. The test t is A-types unreliable if the

following three conditions are satisfied

• A-type heterogeneity: there is θ1, θ2 ∈ A and θ3 ∈ R such that

θ1 ≤t θ3 ≤t θ2, (U-1)

• Imprecise at the bottom: there is θ ∈ Θ and θ ∈ A with θ ≤t θ such that

πt(x1|θ)

 ∑
θ∈A, θ≤tθ

µ(θ)−
∑

θ∈R, θ≤tθ

µ(θ)

 ≥
∑

θ∈A, θ≤tθ

µ(θ)πt(x1|θ)−
∑

θ∈R, θ≤tθ

µ(θ)πt(x1|θ),

(U-2)

• Precise at the top: there is θ ∈ Θ and θ ∈ A with θ ≥t θ such that

∑
θ∈A, θ≥tθ

µ(θ)πt(x1|θ)−
∑

θ∈R, θ≥tθ

µ(θ)πt(x1|θ) ≥ πt(x1|θ)

 ∑
θ∈A, θ≥tθ

µ(θ)−
∑

θ∈R, θ≥tθ

µ(θ)


(U-3)

To understand the property A-types unreliability, suppose that we interpret signal x1 as a high
signal and the DM only accepts after a high signal. We can then interpret the order ≥t as ranking
types by their performance on the test.

Condition ‘A-types heterogeneity’ (U-1) first states that there is one A-type that is performing
worse than some R-type while some other A-type performs better. This condition captures that the
test might be adapted to some A-types in the sense that they perform well on it while other A-types
do poorly.

A-types unreliability also requires that the test is ‘Imprecise at the bottom’ and ‘Precise at
the top’. These two conditions are quantitative properties determining the extend to which the
A-types perform poorly at the bottom of the performance distribution and well at the top. To see

14Recall that as argued in the discussion of Theorem 1, the max-min characterisation of the DM-preferred equilib-
rium also holds when strategies are constrained to be increasing.
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this, observe that the RHS of condition ‘Imprecise at the bottom’ (U-2) is the DM’s payoffs when
accepting after signal x1 from types below θ. The LHS is the payoffs of the DM when types at the
bottom are pooled together and all send signal x1 with probability πt(x1|θ). A test is ‘Imprecise at
the bottom’ when the DM is better off having types pooled rather than follow the signal.

Similarly, condition ‘Precise at the top’ (U-3) states that for types high enough according to
≥t, the test is precise: the DM is better off using the test rather than having them pooled and send
signal x1 with probability πt(x1|θ). The property A-types unreliability is satisfied if these three
conditions are satisfied.

Before turning to the results, I note that two simpler prior-independent properties on t can help
determine whether the test is A-types unreliable. If there is θ1, θ2 ∈ A such that θ1 ≤t θ ≤t θ2 for
all θ ∈ Θ, then the test is A-types unreliable. Intuitively, this holds when both the best and worse
performer are A-types.

If, on the other hand, there is θ1, θ2 ∈ A such that A = {θ : θ1 ≤t θ ≤t θ2}, then there is
no ‘A-types heterogeneity’ (U-1) and thus the test is not A-types unreliable. We can interpret this
last condition as a single-peakness property on test t. A test is not A-types unreliable in a natural
specification where all A-types have a higher performance on the test than any R-type. But a test
is not A-types unreliable also when A-types have an intermediate performance on the test or are
the worst performers.

Proposition 1. Let X = {x0, x1}. Suppose there is t ∈ T such that t ⪰ t′ for all t′ ∈ T and that

θ ̸=t θ
′ for all θ, θ′ ∈ Θ.

If the test t is A-types unreliable, there is an optimal menu containing some t′ ⪯ t.

If the test t is not A-types unreliable, the singleton menu {t} is optimal.

The proposition is not an ‘if and only if’ statement because the optimal menu is not always
unique. So it can be that both a menu containing a dominated test and a menu containing only
the dominant test are optimal. This situation occurs, for example, when the dominant test is not
informative enough and the DM does not act differently after observing different signals.

In terms of our admission test example, Proposition 1 delivers the following intuition: if the
university believes that sufficiently many good candidates will not perform well on an admission
test, it will be better off giving a choice of tests to the candidates. This choice will allow these bad
performers to avoid being punished by the test. As argued in the introduction, this is a concern
universities show when making some parts of their admission processes optional, whether it is an
interview, an optional reference letter or a standardised test. In these cases, university admission
officers explicitly advice candidates to not submit material that would hurt them (Saviano, 2020;
University of Chicago, 2024b).

The key feature of A-types unreliability that delivers Proposition 1 is that different A-types
have different performances on the test, in the sense of condition (U-1) where some A-types per-
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form worse than R-types while others perform better. Importantly, it is not that the test is not
monotone with respect to types. The reason the test has to be flawed in that way is that it needs to
be possible to give at least two different A-types incentives to choose a different test. Conditions
‘Imprecise at the bottom’ (U-2) and ‘Precise at the top’ (U-3) are then quantitative conditions that
ensure that separation will be optimal for the DM. In fact, whenever condition (U-1), which is
prior-free, is satisfied, there is always a prior such that conditions (U-2) and (U-3) are satisfied as
well.

To see why it is optimal to offer a dominated test, suppose the DM offers a menu where only
the dominant test is offered and the DM only accepts after the signal x1. If condition (U-2) is
satisfied, the DM can always offer an uninformative test and commit to accept with probability
πt(x1|θ) where θ is the threshold type in the definition of (U-2). Then condition (U-2) ensures this
is a profitable deviation as A-types will benefit more from it than R-types.

To prove that when test t is not A-types unreliable, the singleton menu {t} is optimal, I use
two types of arguments. First, I show that whenever condition (U-1) is not satisfied and some
types choose test t any equilibrium is payoff equivalent to an equilibrium where only t is chosen.
The key step in the analysis is noting that pt(α; θ) − pt′(α; θ) is single-crossing in θ, with respect
to the order ≥t, for any α. When test t does not satisfy (U-1), we can use the single-crossing
condition and properties of tests satisfying the monotone likelihood ratio property to show that any
equilibrium is payoff equivalent to an equilibrium where only t is chosen.

On the other hand, when (U-2) is not satisfied, I show that for any equilibria where at least two
tests are chosen, there is a deviation in the max-min problem by eliminating the test chosen by the
lowest types in the order ≥t. The violation of (U-3) is treated symmetrically.

Finally, I note that we can use Proposition 1 to establish when it is optimal to include another
test t′ in the menu, even when t and t′ are not Blackwell comparable. To show Proposition 1,
I show that whenever the dominant test is A-types unreliable, it is always optimal to include a
completely uninformative test. This shows in fact that there is always a menu reaching higher
payoffs (sometimes weakly) than the singleton menu {t} for any set of feasible tests. Indeed,
because any test t′ is Blackwell more informative than the uninformative test, the DM can always
benefit from adding t′ even if t and t′ are not Blackwell comparable. Recall that I denote by Π the
set of Blackwell experiments with signal space X: Π = {π : Θ → ∆X}.

Corollary 2. Let X = {x0, x1}. If test t is A-types unreliable, then the DM’s payoffs are higher in

the menu {t, t′} than in {t} for any t′ ∈ Π.

The ideas of Proposition 1 can be partially extended to more than two signals without imposing
a priori restrictions on the DM strategy.15 First, if all tests satisfy the monotone likelihood ratio

15As mentioned, in online appendix F, I extend the result of Proposition 1 in a setting where the DM is constrained
to use an increasing strategy.
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property and the DM wants to accept only types above a threshold, the optimal menu is the one
that offers only the dominant test.

Proposition 2. Suppose Θ, X ⊂ R, A = {θ : θ > θ} for some θ and all tests in T have full

support and the monotone likelihood ratio property: for θ > θ′,

πt(x|θ)
πt(x|θ′)

is increasing in x.

If there is t ⪰ t′ for all t′ ∈ T , then the menu {t} is optimal.

Again, this result holds by showing a single-crossing difference property on the acceptance
probability. Intuitively, the reason is that a more informative test sends relatively higher signals
for higher types. So if a low type chooses the most informative test, the higher types must also
choose that one. This constraint on strategies prevents any pooling of A-types and R-types on two
different tests. Combined with Lemma 2 that guarantees the inclusion of the dominant test, we get
our result. This result would hold using a weaker information order like Lehmann (1988) or some
weakening of it. The key property delivering the result is the single-crossing condition described
above.

If it is possible to find two signals, x, x′, two A-types A1, A2 and one R-type, R1 such that
πt(x|A1)
πt(x′|A1)

< πt(x|R1)
πt(x′|R1)

< πt(x|A2)
πt(x′|A2)

, then there is a test t′ strictly less informative than t and a prior such
that offering {t, t′} is better for the DM than just offering {t}.

Proposition 3. Let t be a test. Suppose there are two signals x, x′ ∈ X , types A1, A2 ∈ A and

R1 ∈ R such that
πt(x|A1)

πt(x′|A1)
<

πt(x|R1)

πt(x′|R1)
<

πt(x|A2)

πt(x′|A2)
.

There is a prior µ and a test t′ ≺ t such that the DM’s payoffs are higher in the menu {t, t′} than

in {t}.

Intuitively, if we interpret x as a high signal, the A-type A1 sends relatively low signals. Sup-
pose that the prior is such that, if only t is offered, x is accepted and x′ is not. In a sense, it means
that in the test t, type R1 performs better than A1 on the signals x, x′. It is then beneficial for the
DM to include a test that pools signals x, x′ together. In that new test, type A1 can choose the
coarsened test where the superior performance of type R1 is less important than in the original test.
The conditions in Proposition 2 and Proposition 3 are the same as in Silva (2024), who studies
communication in a model with imperfect verification. I discuss the connection with his results in
Section 6.
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4.2 Environments with tests ordered by their difficulty

In many economic environments, the DM does not necessarily have access to a most informative
test but can vary the difficulty to pass a test. This is for example the case for a regulator that can
decide how demanding a certification test is. Like in Proposition 1 and Proposition 2, I show that
the optimal menu is a singleton. I first formalise the notion of difficulty of a test as follows.

Definition 3 (Difficulty environment). An environment is a Difficulty environment if Θ ⊂ R, A =

{θ : θ > θ} for some θ, X = {x0, x1}, T ⊂ R, all tests have full support, satisfy the monotone

likelihood ratio property and for all t > t′, and θ > θ′,

πt(x|θ)
πt(x|θ′)

≥ πt′(x|θ)
πt′(x|θ′)

, for x = x0, x1.

If t > t′, I will say that t is harder than t′. Importantly, a harder test is not more informative. To
understand this fact better, let µ(·|x, t) be a posterior belief after observing signal x in test t and let
⪰FOSD denote the first-order stochastic dominance order. The monotone likelihood ratio property
implies that µ(·|t, x1) ⪰FOSD µ(·|t, x0), that is, that a higher signal is ‘good news’ about the type
(Milgrom, 1981). The last property in the definition further implies µ(·|t, x) ⪰FOSD µ(·|t′, x), and
this property is tight as formalised below.

Proposition 4. Test t is harder than t′ if and only if µ(·|t, x) ⪰FOSD µ(·|t′, x) for all prior µ

(including non full support).

The proof of this result is in the online appendix B.1.
The prior in Proposition 4 is allowed to be non full support because the proof of necessity

is for the case of a binary type, as in the proof of necessity in Proposition 1 in Milgrom (1981).
Intuitively, the characterisation shows that a passing grade shifts beliefs more towards higher types
in a harder test and a failing grade shifts beliefs more towards lower types in an easy test. Or
put differently, the harder a test is, the more informative it is about the high types when there is
a passing grade, whereas an easier test is informative about the low types when the test is failed.
This reasoning implies that if two tests are ordered by difficulty, they are generally not ordered by
informativeness.16 Figure 1 illustrates two tests ordered by difficulty graphically. As an example,
if Θ ⊂ (0, 1) and πt(x1|θ) = θt, we are in a Difficulty environment.

Proposition 5. In a Difficulty environment, a singleton menu is optimal.

Like Proposition 1 and Proposition 2, Proposition 5 illustrates how incentive constraints shape
the size of the optimal menu. In some of these cases, the equilibrium when the dominant test is

16There are knife-edge cases where two tests can be compared both in terms of difficulty and informativeness. This
situation occurs when the posterior belief at one signal is the same across tests.
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E[θ]E[θ|x0, t
′] E[θ|x1, t

′] E[θ|x1, t]E[θ|x0, t]

Figure 1: Illustration of posterior means for two tests, t > t′. The good news signal x1 shifts the
posterior towards a higher posterior mean in the harder test. The bad news signal x0 shifts the
posterior towards lower posterior mean in the easier test.

offered is unique and only that test is chosen. Here, it is possible to construct an equilibrium where
more than one test is chosen in equilibrium. However, the DM strategy needed to sustain that
equilibrium is such that he is better off offering only one test.

The proof proceeds in two steps. First, I show that there are at most two tests in the optimal
menu and if there are two tests, the harder test must be more lenient that the easy test. Intuitively,
no one would choose a hard test if on top of that the requirements to be accepted would be harder
to fulfil. In particular, I show that after the hard test, the DM must accept with some probability
after a failing grade and after the easy test, he must reject with positive probability after a passing
grade.

This requirement means that to maintain incentives to select both tests, the DM reacts only to
the least informative signal from the test: in the hard test after a failing grade, in the easy test after
a passing grade. I then show that in this situation the DM is better off using only one test and reject
after a failing grade and accept after a passing grade.

5 Sufficient conditions for test inclusion

In this section, I study in more detail the notion of efficient allocation of tests to the agent’s types. I
show that a sufficient condition to include a test in the optimal menu is if it is good at differentiating
one A-type from all the R-types. This condition captures a notion of a test tailored for the A-type.

Definition 4. Fix θ ∈ A. Test t θ-dominates t′, t ⪰θ t
′, if there is β : X ×X → [0, 1] such that for

all x′ ∈ X ∑
x

β(x, x′)πt(x|θ) ≥ πt′(x
′|θ)

for all θ′ ∈ R,
∑
x

β(x, x′)πt(x|θ′) ≤ πt′(x
′|θ′)

for all x ∈ X,
∑
x′

β(x, x′) ≤ 1
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To understand this definition better, compare it to Blackwell’s (1953) informativeness order. It
requires the existence of a function β such that for all x′ ∈ X ,

∑
x β(x, x

′)πt(x|θ) = πt′(x
′|θ) for

all θ ∈ Θ and for all x ∈ X ,
∑

x′ β(x, x′) = 1. The key difference is that we restrict attention to one
A-type and all the R-types. This condition captures the idea that the θ-dominant test is tailored
to differentiate θ from each R-type. The second difference is that it requires only inequalities
whereas the Blackwell order requires equalities. We can relax Blackwell’s (1953) definition in that
way because we are fixing the utility function we are interested in, unlike in Blackwell (1953).17

If a type θ ∈ A has a ⪰θ-dominant test, then this test is used in an optimal menu. This result
shows that an important property of tests is not so much how good they are at differentiating types,
but how good they are at differentiating one type the DM wants to accept from all the types he
wants to reject.

Proposition 6. Suppose there are t ∈ T and θ ∈ A such that t ⪰θ t′ for all t′ ∈ T , then t is part

of an optimal menu.

6 Extensions and discussions

In this section, I extend the strategy space of the agent by allowing for nonverifiable communi-
cation and unobservable costless effort choice. I show that the optimal menu and communication
scheme are again the outcome of a max-min problem. I then put more structure on the effort corre-
spondence e and revisit the results of Section 4.1. In appendix D in the online appendix, I consider
another extension where I show that the DM benefits from using randomised mechanisms that map
a private message of the agent to a possibly random allocation over tests.

I formalise unverifiable communication and unobserved effort choice as follows. Define the
effort correspondence as e : T × Θ ⇒ Θ with the restriction that θ ∈ e(t, θ) for all t ∈ T . The
set e(t, θ) denotes the set of types the type θ can copy in test t. If type θ copies θ′ in test t, then
type θ generates a distribution over signals πt(·|θ′). I call this effort because it will be the leading
interpretation once I put more structure on e. The story I have in mind is that the set e(t, θ) captures
the set of types that type θ can copy by putting less effort into the test. Communication is modelled
by a finite set C of output messages with |C| ≥ |A|.

The agent’s strategy is now σ : Θ → ∆(T × C × Θ) with the restriction that σ(t, c, θ′|θ) > 0

only if θ′ ∈ e(t, θ). The payoff of type θ from choosing (t, c, θ′) for a given α is pt,c(α; θ
′) =

17Note also that if the θ-dominant test has full support for the A-type, then the inequalities must hold with equality.
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∑
x α(t, c, x)πt(x|θ′). Again, let σΘ′

= (σ(·|θ))θ∈Θ′ . The DM’s payoffs become

v(α, σA, σR) =
∑
θ∈A

∑
t,x

∑
θ′∈e(t,θ)

µ(θ)σ(t, c, θ′|θ)α(t, c, x)πt(x|θ′)

−
∑
θ∈R

∑
t,x

∑
θ′∈e(t,θ)

µ(θ)σ(t, c, θ′|θ)α(t, c, x)πt(x|θ′)

Note that absent any effort, i.e., e(t, θ) = {θ} for all types and tests, the original model con-
tained the case of communication. Indeed, we can interpret each pair (t, c) as a distinct test. The
set of feasible tests would then be T ′ = {(t, c) : t ∈ T, c ∈ C} with πt,c(·|θ) = πt(·|θ). Thus all
the results from the previous sections extend to this case.

Let suppT σ(·|θ) be the support of a type’s strategy restricted to the test choice dimension.

Theorem 2. For any (α, σA) ∈ argmaxα̃,σ̃A minσ̃R v(α̃, σ̃A, σ̃R), an optimal menu is

M = ∪θ∈A suppT σ(·|θ).

Additionally, for any σR ∈ argminσ̃R maxα̃ v(α̃, σ
A, σ̃R), (α, σA, σR) are the strategies in the

corresponding DM-preferred equilibrium.

Moreover,

• The DM does not benefit from commitment.

• There exists a DM-preferred equilibrium where σA is in pure strategies and each θ ∈ A

sends a different message deterministically, i.e., each A-type truthfully communicates his

type.

The proof follows the same lines as the proof of Theorem 1 and is in online appendix B.2.
Theorem 2 shows that the results extend naturally to an environment where communication

and costless unobserved effort are allowed. Because the DM can commit to a strategy, he can
always guarantee each A-type at least as much as he would have if he were to pool with another
A-type. This argument guarantees that there is a solution to the problem with commitment where
any A-type separates from the other A-types.

To illustrate the consequences of unobserved effort and communication, I will focus on a setup
with binary tests: X = {L,H}. As in Section 4.1, we can define for each test t the order ≥t

such that θ ≥t θ
′ if and only if πt(H|θ) ≥ πt(H|θ′). If the agent can exert unobserved effort, the

correspondence e is defined as e(t, θ) = {θ′ : θ′ ≤t θ}. In the context of a university admission
test, it means that any student can achieve the distribution of grades of a worse performing student.
If the agent cannot exert unobserved effort, as in the baseline environment, then e(t, θ) = {θ}. In
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this new environment, signals have an explicit meaning and signals H and L stand for high and
low.18

An environment, T , is a set of set of feasible tests, i.e., T ∈ 2T . A menu has productive

communication if there are two messages c1, c2 and a test t such that the pairs (t, c1), (t, c2) are on
path and α(·, t, c1) ̸= α(·, t, c2).

Proposition 7. Let X = {H,L}. Assume that nonverifiable communication is allowed. Let T =

{T : there is t ∈ T with t ⪰ t′, for all t′ ∈ T}.

• If e(t′, θ) = {θ′ : θ′ ≤t′ θ} for all t′ ∈ T , then a menu with one test and productive

communication is never strictly optimal and is sometimes suboptimal in environment T .

Let t ∈ T be such that t ⪰ t′ for all t′ ∈ T . If the test is ‘Imprecise at the bottom’, i.e., there

is θ ∈ Θ and θ ∈ A with θ ≤t θ such that

πt(H|θ)

 ∑
θ∈A, θ≤tθ

µ(θ)−
∑

θ∈R, θ≤tθ

µ(θ)

 ≥
∑

θ∈A, θ≤tθ

µ(θ)πt(H|θ)−
∑

θ∈R, θ≤tθ

µ(θ)πt(H|θ),

then there is an optimal menu containing t′ ⪯ t.

• If e(t′, θ) = {θ} for all t′ ∈ T , then a menu with different tests and no productive communi-

cation is never strictly optimal in environment T .

I interpret this result as showing that cheap-talk can be a powerful tool theoretically but that
menu design, even using a dominated test, is still likely to play a role in applications. The condition
to introduce a dominant test when there is cheap-talk and effort provision is similar to the ones
where all information is verifiable and there is no effort provision. When there is a Blackwell
dominant test, cheap-talk, combined with the dominant test, can provide more information than
through menu design. However, using cheap-talk is not fully robust to the introduction of effort
provision. In any setting where the agent can voluntarily obtain lower grades, cheap-talk alone
cannot help the DM but introducing a less informative test can. Below, I revisit the example of
Section 2.2 to show the impact of introducing effort and non-verifiable communication. Note also
that Proposition 7 does not say that menu design has no value whenever communication is allowed
but only that menu design has no value when there is a Blackwell dominant test.

With effort, condition ‘Imprecise at the bottom’ (U-2) is sufficient to include a dominated test
in the optimal menu. The intuition for this result is the same as the intuition for Proposition 1. If

18This way of modelling effort is similar to the modelling choice of Deb and Stewart (2018) and Ball and Kattwinkel
(2022). The main difference is that in their setting the agent always has the possibility to get the lowest grade with
probability one. Here, the agent must always get the probability distribution of an existing type. The two methods are
the same if a type gets the low signal with probability one. The approach in this paper maintains the linearity of the
strategy and we can therefore apply the same techniques as in Theorem 1.
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the test is ‘Imprecise at the bottom’, the DM can introduce a dominated test so that A-types at the
bottom of the performance distribution can signal their low ability.

There are fewer sufficient conditions for introducing a dominated test than in Section 4.1 be-
cause the effort provision introduces constraints on the DM strategy. Indeed, given the possibility
that the agent can always reduce effort, the DM must have a strategy that is increasing in the signal
if he wants the agent to put effort into the test.

Non-verifiable communication introduces other strategic concerns. Communication is benefi-
cial for the DM if there is productive communication in the DM-preferred equilibrium. If the DM
wants at the same time (1) to react to the information in the test and (2) to have different types
using different tests, the DM’s strategy must be increasing in the test outcome after some messages
and must be decreasing after some other message.19

These two considerations deliver the first part of Proposition 7. On the one hand, the DM would
like to substitute the choice of a dominated test with the choice of the dominant test with a different
cheap-talk message as a means of communication. This substitution is in principle possible. But
to make it incentive-compatible, the DM creates incentives to reduce effort in the test after some
messages, making the test completely uninformative when these messages are used.

The following example revisits the example of Section 2.2 to illustrate Proposition 7. It shows
how non-verifiable communication is useless when the agent can obtain a low grade easily. It also
provides a situation where a menu consisting of two tests {t, t′} with t ≻ t′ is strictly better than
offering {t, ∅} where ∅ denotes an uninformative test. An important feature of this example is that
the orders over types defined by the tests differ, i.e., ≥t ̸=≥t′ . It remains an open question whether
including a strictly dominated test can be optimal if ≥t=≥t′ for all t, t′ ∈ T .

Example. Let Θ = {A1, A2, R1} with A = {A1, A2}. Consider the set of feasible tests T =

{t, t′, ∅} where ∅ is an uninformative test. The prior satisfies µ(A1) < 2
3
µ(R1) < µ(A2). The test

t is described by X = {H,L} and

πt(x|A1) =

1/2 if x = L

1/2 if x = H
πt(x|R1) =

1/3 if x = L

2/3 if x = H

πt(x|A2) =

0 if x = L

1 if x = H

Define t′ by πt′(θ) = ϵπt(H|θ) + πt(L|θ) with ϵ ∈ (0, 1/2).20 Note that we have A1 <t R1 <t

19If the DM’s strategy is increasing after two different messages, then all types have the same preferred strategy
and so they all choose the same message.

20The restriction to (0, 1/2) is not essential to the qualitative message of the example but allows us to consider
fewer cases in the analysis below.
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A2 and A1 >t′ R1 >t′ A2.
We can interpret the example as follows. The DM is a university that cares about technical

skills and creative skills and these two skills are anti-correlated: the more creative a type is, the
less technical it is. Type A2 is a technical type and A1 is creative type. The type R1 is mediocre
in both dimensions. The test t is good at identifying technical types whereas test t′ is good at
identifying creative types. However, the ‘creative’ test t′ is less precise than the ‘technical’ test t.

As derived in Section 2.2, the profits from the DM-preferred equilibrium in the case of menus
{t} and {t, ∅} are

π(t) = µ(A1) · 1
2
+ µ(A2) · 1− µ(R1) · 2

3
,

π(t, ∅) = µ(A1) · 2
3
+ µ(A2) · 1− µ(R1) · 2

3
.

In the case where only t is offered, the DM accepts only accepts after signal H . In the case
where the menu {t, ∅}, the DM accepts with probability 2/3 after observing ∅ and type R1 mixes
between t and ∅. Given that the DM only accepts after a high signal in equilibrium, all types have
an incentive to exert full effort in equilibrium.

Now let’s consider what would happen when introducing nonverifiable communication. A
DM-preferred equilibrium in this case would be one where all types choose t but A1 and A2 send
different messages c1, c2. To maintain incentive compatibility, it must be that R1 mixes between
the two messages, for otherwise one message would fully reveal the type.

The DM-preferred equilibrium is described as follows:

σ(t, c1|R1) =
3

4
· µ(A1)
µ(R1)

σ(t, c1|A1) = 1 σ(t, c2|A2) = 1.

The DM’s strategy is

α(x, t, c1) =

0 if x = L

1 if x = H
α(x, t, c1) =

1 if x = L

1
2

if x = H
.

In equilibrium, types A1 and A2 send different messages and R1 mixes between the two mes-
sages. To benefit from communication, the DM uses a strategy after c1 that is decreasing in the
signal: α(L, t, c1) = 1 > 1

2
= α(H, t, c1). Each of these strategies are best-replies for the players.

The payoffs from this equilibrium is

π((t, c1), (t, c2)) = µ(A1) · 3
4
+ µ(A2) · 1− µ(R1) · 2

3
> π(t, ∅).
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If we introduce unobserved effort in the equilibrium presented above, then R1, when sending
message c1, would have a strict incentive to copy A2 to increase his chance to get a low signal
L. That would make the test completely uninformative as all types sending c1 would have the
signal distribution of A1. By Proposition 7, it is not possible to use communication in a way that
incentivise effort and have the DM benefit from communication.

However, the DM can do better than the menu {t, ∅} by offering {t, t′}. Indeed, consider the
following strategies:

σ(t′, R1|R1) =
3

4
· µ(A1)
µ(R1)

, σ(t, R1|R1) = 1− 3

4
· µ(A1)
µ(R1)

,

σ(t′, A1|A1) = 1, σ(t, A1|A2) = 1.

The DM’s strategy is

α(x, t) =

0 if x = L

1 if x = H
α(x, t′) =

 1−2ϵ
2(1−ϵ)

if x = L

1 if x = H
.

In this equilibrium, the creative type A1 chooses the ‘creative test’ and the technical type A2

chooses the ‘technical test’. The mediocre type mixes between the two options. The DM has a
strategy that is always increasing in the signal: α(H, t̃) > α(L, t̃) for t̃ = t, t′ and therefore all
types have an incentive to exert effort on the test. The profit from that menu are

π(t, t′) = µ(A1) · 3
4
+ µ(A2) · 1− µ(R1) · 2

3
> π(t, ∅).

Note that in this example, the profits from the menu containing a dominated test are the same as
when only using the dominant test and communication. This is not true in general. Generally,
the profits using only communication and the dominant test will have a higher payoffs as the ones
using the dominated test.

Relation to verification models with communication. Proposition 7, in the case of e(t, θ) =

{θ}, can in fact be extended to arbitrary test restrictions when one test is more informative than all
the others. This result derives from Lemma 2 that says that any Blackwell dominant test is part of
an optimal menu.

Corollary 3 (to Lemma 2). Suppose there is t ∈ T such that t ⪰ t′ for all t′ ∈ T , nonverifiable

communication is allowed and e(t′, θ) = {θ} for all t′ ∈ T . Then an optimal menu is {t}.

This result tells us that when there is a Blackwell dominant test, all the communication can
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be done through the cheap-talk communication and there is no loss of optimality to only use the
dominant test t. At the same time, if the dominant test t is not A-types unreliable or if types satisfy
the monotone likelihood ratio property, there is no benefit to giving a choice of test (Proposition 1
and Proposition 2). Thinking of the set of available tests as pairs of test and message, these re-
sults taken together show when communication is not needed to reach the optimum, i.e., all types
choose the same message-test pair in a DM-preferred equilibrium. Similarly, Proposition 1 and
Proposition 3 give conditions under which introducing another message-test pair is optimum, i.e.,
the dominant test is used in combination with different messages. As argued in the discussion
following Proposition 7, if signals are ordered the DM would need to use strategies that are not
increasing in the signal realisation to sustain these equilibria.

These observations connect this paper to results from Silva (2024) and Weksler and Zik (2022)
that show conditions under which communication is useful when the receiver has access to a fixed
test. In particular, Silva (2024) studies a model with the same payoffs. The condition from Propo-
sition 3 appeared first in Proposition 2 of his paper and he also notes that monotonicity delivers no
value of communication (Proposition 1 in Silva, 2024).21 The property of test A-types unreliability
and thus the results from Proposition 1 do not have a counterpart in Silva (2024). Proposition 1
combined with Corollary 3 above generalises the results of Silva (2024) in the case of binary sig-
nals.

7 Conclusion

That choice reveals private information is a hallmark observation of economic theory. In this paper,
I study how the choice over tests, objects that themselves reveal information, can be leveraged by a
decision-maker as an additional source of information. To do so, I show how the statistical proper-
ties of the tests interact with the strategic choices of agents and what consequence this interaction
has for the design of menus. In particular, I provide conditions under which the decision-maker can
benefit from a menu across several environments where tests have different statistical properties. I
also show that in several natural environments, the DM cannot do better than using a single test.

The DM faces two constraints to create choice separation: the agent’s incentive constraints and
his own best-reply constraints. I show in Theorem 1 that this problem is equivalent to solving the
DM’s problem without best-reply constraints through a max-min characterisation. This characteri-

21In fact, Proposition 2 from this paper can be derived from Silva’s (2024) Proposition 1 in the following way:
Any menu with a dominated test can be replicated with copies of the dominant test. We can then apply Silva’s (2024)
result to show that the DM cannot do better than with only one copy of the dominant test. The proof of Proposition 2
has an independent interest because I show that whenever the dominant test is included with a dominated test, the
equilibrium payoffs are unique. It also uses the more permissive concept of accuracy (Lehmann, 1988) and is therefore
more general.
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sation stems from the structure of preferences and is thus applicable in a wide range of mechanism
design settings, beyond choices of tests.

Throughout the paper, I provide conditions under which equilibrium forces limit whether the
DM can benefit from offering a menu as well as use the max-min characterisation to show when
including a test in the menu is optimal. An important technical observation is that single-crossing
conditions on the acceptance probability play a key role in having a singleton menu. While single-
crossing conditions are usually used to maintain separation in signalling and screening models,
in this case separation reveals too much information through the choice. This separation in turn
makes it impossible to maintain the incentives to separate in the first place.

Finally, putting more structure on the feasible tests forces us to think about what are reasonable
and economically meaningful restrictions on tests. I have considered three possibilities in this pa-
per and introduced a new order on experiments to characterise the notion of difficulty. Developing
more ways of restricting feasible tests would allow to explore more trade-offs between experiments
and would further enrich the literature on test design.
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A Appendix: Omitted proofs

A.1 Proofs of Lemma 1 and Theorem 1

Lemma 1: The problem the DM needs to solve when committing to α is

max
α

∑
θ∈A

µ(θ)
∑
t∈T

σ̃(t|θ)pt(α; θ)−
∑
θ′∈R

µ(θ′)
∑
t∈T

σ̃(t|θ′)pt(α; θ′)

s.t. σ̃(·|θ) ∈ argmax
∑
t∈T

σ(t|θ)pt(α; θ), for all θ ∈ Θ

Therefore,
∑

t∈T σ̃(t|θ)pt(α; θ) = maxσ(·|θ)
∑

t σ(t|θ)pt(α; θ) for all θ. We can plug this ex-
pression in the DM’s maximisation problem to obtain

max
α

max
σA

min
σR

∑
θ∈A

µ(θ)
∑
t∈T

σ(t|θ)pt(α; θ)−
∑
θ′∈R

µ(θ′)
∑
t∈T

σ(t|θ′)pt(α; θ′)
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where the min is obtained because of the minus sign.
Theorem 1: Let (α, σA) ∈ argmaxα̃,σ̃A minσ̃R v(α̃, σ̃A, σ̃R) and

σR ∈ argmin
σ̃R

max
α̃

v(α̃, σA, σ̃R).

Note that σA is fixed in the min-max problem. I will now show that these strategies are equilibrium
strategies.

Because the order of maximisation does not matter, σA ∈ argmaxmin v(α, σ̃A, σ̃R). More-
over, σA ∈ argmax v(α, σ̃A, σR) ⇔

∑
t∈T σ(t|θ)pt(α; θ) ≥

∑
t∈T σ̃(t|θ)pt(α; θ) for all θ ∈ A

and σ̃A. This last expression does not depend σR. Therefore, σA ∈ argmax v(α, σ̃A, σR).
Similarly, α ∈ argmaxmin v(α̃, σA, σ̃R). Because v is linear in both α and σR, (α, σR) is

a saddle-point of v(·, σA, ·) by the minimax theorem. As for σA, σR ∈ argmin v(α, σA, σ̃R) ⇔∑
t∈T σ(t|θ)pt(α; θ) ≥

∑
t∈T σ̃(t|θ)pt(α; θ) for all θ ∈ R and σ̃R. Therefore all strategies are

best-reply.
Beliefs on-path are formed using Bayes’ rule and off-path beliefs are chosen to justify the

off-path actions of α (these beliefs are always possible to find as any action is best-reply to some
beliefs).

Note also that we can without loss of generality take σA to be in pure strategy as it is maximises
a linear function.

A.2 Proof of Lemma 2

Because t ⪰ t′ implies t ⪰θ t′ for some θ ∈ A, Lemma 2 is a corollary of Proposition 6 proven
below.

A.3 Proof of Proposition 1

Suppose the dominant test is A-types unreliable. Suppose that only t is offered in the optimal
menu and that the DM’s strategy is such that α(x1, t) = 1 and α(x0, t) = 0. (Because there is only
one test offered, we can restrict attention to pure strategies without loss of optimality.)

By condition (U-2), there is θ and θ ∈ A with θ ≤t θ such that∑
θ∈A, θ≤tθ

µ(θ)
(
πt(x1|θ)− πt(x1|θ)

)
≥

∑
θ∈R, θ≤tθ

µ(θ)
(
πt(x1|θ)− πt(x1|θ)

)
.

The DM can modify his strategy α at any other test t′ with α(x, t′) = πt(x1|θ) for x = x1, x0.
Then, pt(α; θ) ≤ pt′(α; θ) only if θ ≤t θ. By condition (U-2), there is at least one A-type willing
to deviate. The payoffs of types choosing test t are left unchanged. Condition (U-2) also guarantees
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that the DM’s payoffs weakly increase for types choosing t′. Therefore it is a profitable deviation
or another optimum in the max-min problem.22

A similar reasoning holds by applying (U-3) if α(x1, t) = 0 and α(x0, t) = 1.
Finally, if α(x1, t) = α(x0, t) ∈ {0, 1}, then we can always add another test with the same

strategy and have at least one A-type choosing it.
Suppose the dominant test is not A-types unreliable.
I first show that whenever for any tests t, t′ with t ⪰ t′, pt(α; θ) − pt′(α; θ) is single-crossing

in θ with respect to the order ≥t, for any α. Because t ⪰ t′, there is β : X ×X → [0, 1] such that
πt′(x̃|θ) = β(x1, x̃)πt(x1|θ) + β(x0, x̃)πt(x0|θ) and

∑
x β(x̃, x) = 1 for x̃ = x1, x0. Type θ ∈ Θ

prefers test t′ over t if

α(x1, t
′)
(
β(x1, x1)πt(x1|θ) + β(x0, x1)πt(x0|θ)

)
+ α(x0, t

′)
(
β(x1, x0)πt(x1|θ) + β(x0, x0)πt(x0|θ)

)
− α(x1, t)πt(x1|θ)− α(x0, t)πt(x0|θ) ≥ 0

Using that πt(x0|θ) = 1 − πt(x1|θ), the expression on the LHS is linear in πt(x1|θ). Therefore,
either pt(α; θ) − pt′(α; θ) ≥ 0 implies pt(α; θ

′) − pt′(α; θ
′) ≥ 0 for all θ′ ≥t θ or pt(α; θ) −

pt′(α; θ) ≤ 0 implies pt(α; θ′)− pt′(α; θ
′) ≤ 0 for all θ′ ≥t θ.

Suppose that condition (U-1) is not satisfied.

Suppose there is a menu with both t, t′. Take A1, A2 ∈ A with A1 <t A2 and because the
signal’s labels are arbitrary, suppose without loss of generality that A1 chooses t′ and A2 chooses
t in some equilibrium. Let α denote the DM equilibrium strategy in this equilibrium.

Again, because t ⪰ t′, there is β : X × X → [0, 1] such that πt′(x̃|θ) = β(x1, x̃)πt(x1|θ) +
β(x0, x̃)πt(x0|θ) and

∑
x β(x̃, x) = 1 for x̃ = x1, x0. Type θ ∈ Θ prefers test t′ over t if

α(x1, t
′)
(
β(x1, x1)πt(x1|θ) + β(x0, x1)πt(x0|θ)

)
+ α(x0, t

′)
(
β(x1, x0)πt(x1|θ) + β(x0, x0)πt(x0|θ)

)
− α(x1, t)πt(x1|θ)− α(x0, t)πt(x0|θ) ≥ 0.

Assuming πt(x0|θ) > 0, this expression becomes

α(x1, t
′)
(
β(x1, x1)

πt(x1|θ)
πt(x0|θ)

+ β(x0, x1)
)
+ α(x0, t

′)
(
β(x1, x0)

πt(x1|θ)
πt(x0|θ)

+ β(x0, x0)
)

− α(x1, t)
πt(x1|θ)
πt(x0|θ)

− α(x0, t),

which is linear in πt(x1|θ)
πt(x0|θ) , a strictly increasing function of θ (recall that θ ̸=t θ

′ for all θ, θ′). We

22One could worry that we do not need (U-2) and (U-3) to hold simultaneously to show that including a dominated
test is optimal. But we cannot have α(x1, t) = 1 and α(x0, t) = 0 as a best-reply to t if (U-3) does not hold.
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can only have πt(x0|θ) = 0 if θ = maxΘ where the max is taken with respect to ≥t, so the case
πt(x0|θ) = 0 can be true for at most one type.

To have A1 choose t′ and A2 choose t, the payoff difference between t′ and t must be strictly
decreasing in θ,23 i.e.,

α(x1, t
′)β(x1, x1) + α(x0, t

′)β(x1, x0)− α(x1, t) < 0. (2)

A necessary condition for (2) to hold is that α(x1, t) > 0. Note the strict monotonicity also implies
that there is θ ∈ A such that any θ >t θ prefers t and any θ ≤t θ prefers t′. Let A+ = {θ ∈ A :

θ >t θ} and R+ = {θ ∈ R : θ >t θ
′, for all θ′ ∈ A}. Condition (U-1) not satisfied implies that

only types in A+∪R+ choose t. Further, for any θ ∈ A+, θ′ ∈ R+, πt(x1|θ)
πt(x1|θ′) <

πt(x0|θ)
πt(x0|θ′) , i.e., we have

MLRP with x0 being the high signal on A+ ∩ R+. This observation combined with α(x1, t) > 0

imply that α(x0, t) = 1 (Milgrom, 1981).
But then no type ever prefer t′ over t. Indeed, the condition to prefer t′ over t,

(
α(x1, t

′)β(x1, x1) + α(x0, t
′)β(x1, x0)− α(x1, t)

)
πt(x1|θ)

≥
(
1− α(x1, t

′)β(x0, x1)− α(x0, t
′)β(x0, x0)

)
πt(x0|θ)

is never satisfied as the LHS is strictly negative because (2) must hold and the RHS is positive
because β(x0, x1) + β(x0, x0) = 1 and α(x̃, t′) ≤ 1, x̃ = x1, x0.

Thus there cannot be an equilibrium where another test than t is chosen.
Suppose that condition (U-2) is not satisfied. Suppose also that a nonsingleton menu M is

optimal. Given that any probability of acceptance pt′(α; θ) with t′ ⪯ t can be replicated with the
test t, we can, for the purpose of showing that a singleton menu {t} is optimal, focus attention to
M = {t1, ..., tn} with πti(·|θ) = πt(·|θ) for i = 1, ..., n.

First, observe that the set of types preferring test ti is always an interval24 because of the single-
crossing condition on pt(α; θ) − pt′(α; θ). Label tests by the position of the types choosing them
in the ≥t order, i.e., t1 is chosen by types in the lowest interval, t2 second lowest, etc. Using the
single-crossing condition again, if we eliminate t1, all types previously preferring t1 will choose
t2.

If after both t1 and t2 the DM is mixing after both signals, we can eliminate t1 with no effects
on incentives or DM’s payoffs as it means that the mass of A and R-types are the same after both
signals in both tests.

I will use the fact that t1 is chosen by types lower than the ones choosing t2 to put some

23If the expression is constant in θ, then all types have the same probability of acceptance in t and t′. So the DM
can merge t and t′, have the same payoffs and not change the incentives to choose other tests.

24A set Θ′ is an interval if there are θ, θ′ such that Θ′ = {θ′′ : θ ≤t θ
′′ ≤t θ

′}.
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structure on α.
First, I show that α(x0, t1) > 0. Suppose it is not the case. Then type θ chooses t1 over t2 if

α(x1, t1)πt(x1|θ) ≥ α(x1, t2)πt(x1|θ) + α(x0, t2)(1− πt(x1|θ)).
Rearranging, we get

(
α(x1, t1)− α(x1, t2) + α(x0, t2)

)
πt(x1|θ) ≥ α(x0, t2).

To have any type choosing t1, it must be that α(x1, t1) ≥ α(x1, t2) as πt(x1|θ) < 1 (otherwise
test t has trivially πt(x1|θ) = 1 for all types). But then the term multiplying πt(x1|θ) on the second
line is positive and if pt1(α; θ) ≥ pt2(α; θ) then pt1(α; θ

′) ≥ pt2(α; θ
′) for all θ′ ≥t θ. Combined,

these observations contradict that t1 is chosen by lower types than the ones choosing t2. Therefore
α(x0, t1) > 0. Similarly, one can show that α(x1, t2) > 0.

We must also have that either (a) α(x1, t1) > 0 ⇒ α(x0, t2) = 0 or (b) α(x0, t2) > 0 ⇒
α(x1, t1) = 0. If none of these alternatives hold, the DM must be mixing after both signals in at
least one of the two tests or the DM follows the same strategy in both tests.

Denote by A = A ∩ {θ ≤t θ} and R = R ∩ {θ ≤t θ}. Denote by µ̃(θ) = σ(t1|θ)µ(θ).
Note that by Theorem 1, we can restrict attention to A-types playing a pure strategy and therefore
µ(θ) = µ̃(θ) for all θ ∈ A.

First assume that α(x1, t1) > 0 and α(x0, t2) = 0. It is strictly profitable to include test t1 in
the menu if the following system of inequalities holds

α(x1, t1)
(∑

θ∈A

µ(θ)πt(x1|θ)−
∑
θ∈R

µ̃(θ)πt(x1|θ)
)
+ α(x0, t1)

(∑
θ∈A

µ(θ)πt(x0|θ)−
∑
θ∈R

µ̃(θ)πt(x0|θ)
)

> α(x1, t2)
(∑

θ∈A

µ(θ)πt(x1|θ)−
∑
θ∈R

µ̃(θ)πt(x0|θ)
)
,

α(x1, t1)πt(x1|θ) + α(x0, t1)πt(x0|θ) ≥ α(x1, t2)πt(x1|θ) for all θ ≤t θ.

The first line guarantees that payoffs from including t1 are larger than eliminating it and have all
types choosing t1 choosing t2. The second line insures that types have indeed an incentive to
choose t1. Note that we must have 1 ≥ α(x1, t2) > α(x1, t1) for otherwise no type would pick t2.
We can obtain the following other system of inequalities: there is α1, α0 ≥ 0 such that

α1

(∑
θ∈A

µ(θ)πt(x1|θ)−
∑
θ∈R

µ̃(θ)πt(x1|θ)
)
− α0

(∑
θ∈A

µ(θ)πt(x0|θ)−
∑
θ∈R

µ̃(θ)πt(x0|θ)
)
< 0,

α1πt(x1|θ)− α0πt(x0|θ) ≤ 0 for all θ ≤t θ,

α0 ≤ 1, α1 ≤ 1− α(x1, t1).

We can apply a theorem of the alternative (e.g., Rockafellar, 2015; Ball, 2023) to say that this
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system of inequalities cannot hold while the following does as well: there is y, z, λ ≥ 0 such that

y
(∑

θ∈A

µ(θ)πt(x1|θ)−
∑
θ∈R

µ̃(θ)πt(x1|θ)
)
+
∑
θ≤tθ

zθπt(x1|θ) + λ1 ≥ 0,

− y
(∑

θ∈A

µ(θ)πt(x0|θ)−
∑
θ∈R

µ̃(θ)πt(x0|θ)
)
−
∑
θ≤tθ

zθπt(x0|θ) + λ0 ≥ 0,

(1− α(x1, t1))λ1 + λ0 ≤ 0,

(1− α(x1, t1))λ1 + λ0 < 0 or y > 0.

I will now show that a solution to the second alternative exists.
We cannot have λ ≥ 0 and (1− α(x1, t1))λ1 + λ0 < 0, therefore, for the second alternative to

hold, we must have y > 0. Moreover, λ ≥ 0 and (1− α(x1, t1))λ1 + λ0 ≤ 0 implies λ = 0.
We can rearrange the first two inequalities as

y
(∑

θ∈A

µ(θ)πt(x1|θ)−
∑
θ∈R

µ̃(θ)πt(x1|θ)
)
≥ −

∑
θ≤tθ

zθπt(x1|θ) (3)

y
(∑

θ∈A

µ(θ)πt(x1|θ)−
∑
θ∈R

µ̃(θ)πt(x1|θ)
)
≥ y

∑
θ∈A

µ(θ)−
∑
θ∈R

µ̃(θ)

+
∑
θ≤tθ

zθ(1− πt(x1|θ))

(4)

Recall that Condition (U-2) not being respected implies that

πt(x1|θ)
( ∑
θ∈A, θ≤tθ

µ(θ)−
∑

θ∈R, θ≤tθ

µ(θ)
)
<

∑
θ∈A, θ≤tθ

µ(θ)πt(x1|θ)−
∑

θ∈R, θ≤tθ

µ(θ)πt(x1|θ). (5)

Given that at most the type θ is indifferent in equilibrium, if equation (5) holds for µ, it also holds
by replacing µ by µ̃. (Otherwise all types are indifferent between t1 and t2.)

Suppose first that
∑

θ∈A µ(θ)−
∑

θ∈R µ̃(θ) ≤ 0. Then we can set y = 1, zθ = −
∑

θ∈A µ(θ) +∑
θ∈R µ̃(θ) and zθ = 0 for θ ̸= θ. Both inequalities (3) and (4), become

πt(x1|θ)
( ∑
θ∈A, θ≤tθ

µ(θ)−
∑

θ∈R, θ≤tθ

µ(θ)
)
≤

∑
θ∈A, θ≤tθ

µ(θ)πt(x1|θ)−
∑

θ∈R, θ≤tθ

µ(θ)πt(x1|θ)

This inequality holds as equation (5) holds. Therefore it is profitable to eliminate t1.
If
∑

θ∈A µ(θ)−
∑

θ∈R µ̃(θ) > 0, we get from equation (5) that
∑

θ∈A µ(θ)πt(x1|θ)−
∑

θ∈R µ̃(θ)πt(x1|θ) >
0. In this case, we must have α(x1, t1) = 1 in equilibrium. Because some types choose t2 in equi-
librium, it means that α(x0, t1) = 0 and α(x1, t2) = 1. But then the DM follows the same strategy
in both tests and we can eliminate one.
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If instead we have α(x0, t2) > 0 and α(x1, t1) = 0. It is strictly profitable to include test t1 in
the menu if the following system of inequalities holds

α(x0, t1)
(∑

θ∈A

µ(θ)πt(x0|θ)−
∑
θ∈R

µ̃(θ)πt(x0|θ)
)
> α(x1, t2)

(∑
θ∈A

µ(θ)πt(x1|θ)−
∑
θ∈R

µ̃(θ)πt(x1|θ)
)

+ α(x0, t2)
(∑

θ∈A

µ(θ)πt(x0|θ)−
∑
θ∈R

µ̃(θ)πt(x0|θ)
)
,

α(x0, t1)πt(x0|θ) ≥ α(x1, t2)πt(x1|θ) + α(x0, t2)πt(x0|θ) for all θ ≤t θ.

To have any type choosing t1, we must have α(x0, t1) ≥ α(x0, t2). Therefore, as before, we can
rewrite this system of inequality as, there is α1, α0 ≥ 0 such that

α1

(∑
θ∈A

µ(θ)πt(x1|θ)−
∑
θ∈R

µ̃(θ)πt(x1|θ)
)
− α0

(∑
θ∈A

µ(θ)πt(x0|θ)−
∑
θ∈R

µ̃(θ)πt(x0|θ)
)
< 0,

α1πt(x1|θ)− α0πt(x0|θ) ≤ 0 for all θ ≤t θ,

α0 ≤ 1− α(x0, t2), α1 ≤ 1.

This is exactly the same system as before except that the bounds on α1 and α0 have changed.
If
∑

θ∈A µ(θ) −
∑

θ∈R µ̃(θ) ≤ 0, we can use exactly the same solution to the alternative to
show that there is no solution to the system of inequalities above. If

∑
θ∈A µ(θ)−

∑
θ∈R µ̃(θ) > 0

then by (U-2), we have
∑

θ∈A µ(θ)πt(x1|θ)−
∑

θ∈R µ̃(θ)πt(x1|θ) > 0. In this case, we must have
α(x1, t1) = 1 in equilibrium. A contradiction.

Suppose that condition (U-3) is not satisfied. This case is treated in the same way as if condition
(U-2) is not satisfied by inverting the roles of x1 and x0.

A.4 Proof of Proposition 2

Note that in an MLRP environment, the strategy of the DM takes the form of a cutoff strategy.
For each test t, there is xt ∈ X such that α(x, t) = 0 for x < xt, α(x, t) = 1 for x > xt and
α(xt, t) ∈ [0, 1]. From Lemma 2, we know that there is an optimal menu containing the Blackwell
most informative test. Because all tests are MLRP and the DM’s payoffs satisfy single-crossing
condition, the Lehmann order is well-defined and the Blackwell order implies the Lehmann order
(Lehmann, 1988; Persico, 2000). Let ⪰a denote the Lehmann order.

The Lehmann order is defined on continuous information structure. But as outlined in Lehmann
(1988), we can always make our conditional probabilities continuous by adding independent uni-
form between each signal. Let’s assume, without loss of generality, that X = {1, ..., n}. The new
distribution over signal is ỹ|θ = x̃|θ − u where u ∼U[0, 1]. Denote by Ft the cdf associated with
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the new information structure.
We have that t ⪰a t′ if y∗(θ, y) ≡ Ft(y

∗|θ) = Ft′(y|θ) is nondecreasing in θ for all y (Lehmann,
1988). In particular, this condition implies that if Ft(y|θ′) ≤ (<)Ft′(y

′|θ′) then Ft(y|θ) ≤ (<

)Ft′(y
′|θ) for all θ > θ′.

Let α be the optimal strategy and xt be the cutoff signal associated to each test. To each(
α(·, t), xt

)
we can associate a yt = xt − α(xt, t).

If t is part of an optimal menu, it must be that there is some θ′ ∈ R such that pt(α; θ′) ≥
pt′(α; θ

′) for all t′. Or put differently, Ft(yt|θ′) ≤ Ft′(yt′|θ′) for all t′. But then Ft(yt|θ) ≤ Ft′(yt′|θ)
for all t′ and all θ > θ′, in particular all θ ∈ A. Therefore all type in A prefer test t as well and there
is an solution of the max-min problem where all types in θ ∈ A choose t. (If there is an A-type
that is indifferent between t and t′ then all types in R must be indifferent or prefer t′ so choosing t

is an equilibrium strategy for such A-types.)

A.5 Proof of Proposition 3

Suppose that t is the only test used in the optimal menu. Define a test t′ such that for all θ ∈ Θ,

πt′(x|θ) =
∑

x̃=x,x′

πt(x̃|θ),

πt′(x̃|θ) = πt(x̃|θ), for all x̃ ̸= x, x′.

The test t′ pools signals x and x′ together and is otherwise identical to t. We have t ≻ t′ as any
strategy under t′ can be replicated under t.

Let µ be such that for all θ ̸= A1, A2, R1, µ(θ) ≈ 0 and such that when only t is chosen, the
DM’s best-reply is α(x, t) = 1 and α(x′, t) = 0. In the max-min problem, consider the deviation
α̃ such that α̃(x, t′) = πt(x|A1)

πt(x|A1)+πt(x′|A1)
+ ϵ for some small ϵ > 0 and α̃ = α otherwise.

Under this alternative strategy, pt(α;A1) < pt′(α̃;A1) but for ϵ small enough pt(α; θ) >

pt′(α̃; θ) for θ = R1, A2. Therefore A1 is accepted with strictly higher probability and the other
types with the same probability as they choose the same test. If the prior on other types is suffi-
ciently small, the deviation is still strictly profitable for the DM.

A.6 Proof of Proposition 5

The way this proof proceeds is by fixing a menu and dividing tests in two categories: (1) those for
which α(x0, t̃) ∈ (0, 1) and α(x1, t̃) = 1 and (2) α(x0, t̃) = 0 and α(x1, t̃) ∈ (0, 1]. I exclude the
possibility that the DM always accepts or rejects after any signal as it would either be the only test
chosen in equilibrium or never chosen. Then, I show that within each category, it is without loss

40



of optimality to have at most one test. It is thus optimal to have at most two tests in the menu. The
last part of the proof shows that the resulting menu is dominated by having only one test.

If there are two tests, t > t′ such that α(x0, t̃) = 0 and α(x1, t̃) ∈ (0, 1], I will show that,
pt(α; θ

′) ≥ pt′(α; θ
′) ⇒ pt(α; θ) ≥ pt′(α; θ) for all θ > θ′. Take two tests such that α(x0, t̃) =

0, t > t′. Let α, α′ denote their respective probability of accepting after x1. Define α(θ) ≡
α(θ)πt(x1|θ) − α′πt′(x1|θ) = 0. Rearranging, α(θ) = α′ πt′ (x1|θ)

πt(x1|θ) . From our assumption on the
difficulty environment, α(θ) is decreasing in θ. If pt(α; θ′) ≥ pt′(α; θ

′) for some θ′ then α ≥ α(θ′).
Then α ≥ α(θ) for all θ > θ′.

In equilibrium, we must have that there is one θ′ ∈ R that chooses t and thus for all θ ∈ A,
pt(α; θ) ≥ pt′(α; θ). Then there is an solution of the max-min problem where t′ is never chosen.
A similar argument can be made for all tests where α(x0, t̃) > 0.

Thus we conclude that it is without loss of optimality that the optimal menu has at most two
tests.

Suppose the optimal menu uses two tests, t > t′. I will now show that it must be that α(x0, t) ∈
(0, 1) and α(x1, t

′) ∈ (0, 1), i.e., the DM must accept in the hard test when there is a fail grade and
accept in the easy test only if there is a pass grade. Suppose it is not the case and denote by α, α′

their respective mixing probabilities. Define α(θ) ≡ α(θ)πt(x1|θ) − α′πt′(x0|θ) − πt′(x1|θ) = 0,
which is equivalent to α(θ) = α′ 1

πt(x1|θ) + (1 − α′)
πt′ (x1|θ)
πt(x1|θ) . Again from our assumptions, this

function is decreasing in θ. A type θ chooses t if α ≥ α(θ). Thus if one θ ∈ A chooses t all
θ ∈ R choose t and there is no pooling of A and R-types on t′, or it is payoff equivalent to just
offering t. Therefore, α(x0, t) ∈ (0, 1) and α(x1, t

′) ∈ (0, 1) for t > t′. If the DM mixes, he must
be indifferent and thus we have∑

θ∈A

µ(θ)σ(t|θ)πt(x0|θ)−
∑
θ′∈R

µ(θ′)σ(t|θ′)πt(x0|θ′) = 0∑
θ∈A

µ(θ)σ(t′|θ)πt′(x1|θ)−
∑
θ′∈R

µ(θ′)σ(t′|θ′)πt′(x1|θ′) = 0

In the easy test, because the DM rejects with positive probability after x1 and rejects for sure
after x0 (as he uses a cutoff strategy), his payoffs from t′ is 0, i.e., he does as well as rejecting for
sure.

In the hard test, he accepts with some probability after x0 and thus his payoffs are∑
θ∈A

µ(θ)σ(t|θ)−
∑
θ′∈R

µ(θ′)σ(t|θ′),

that is the payoffs he would get from accepting all types choosing t. Thus the overall payoffs from
the menu is

∑
θ∈A µ(θ)σ(t|θ) −

∑
θ′∈R µ(θ′)σ(t|θ′). Offering a menu is better than a singleton
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menu if this value is strictly greater than offering t and following the signal∑
θ∈A

µ(θ)σ(t|θ)−
∑
θ′∈R

µ(θ′)σ(t|θ′) >
∑
θ∈A

µ(θ)πt(x1|θ)−
∑
θ′∈R

µ(θ′)πt(x1|θ′)

=
∑
θ∈A

σ(t|θ)µ(θ)πt(x1|θ) +
∑
θ∈A

σ(t′|θ)µ(θ)πt(x1|θ)

−
∑
θ′∈R

σ(t|θ′)µ(θ′)πt(x1|θ′)−
∑
θ′∈R

σ(t′|θ′)µ(θ)πt(x1|θ′)

We can rearrange and use the indifference condition at (x0, t) to get

0 >
∑
θ∈A

σ(t′|θ)µ(θ)πt(x1|θ)−
∑
θ′∈R

σ(t′|θ′)µ(θ)πt(x1|θ′).

This inequality implies

0 >

∑
θ∈Θ σ(t′|θ)µ(θ)πt′(x1|θ)∑
θ∈Θ σ(t′|θ)µ(θ)πt(x1|θ)

(∑
θ∈A

σ(t′|θ)µ(θ)πt(x1|θ)−
∑
θ′∈R

σ(t′|θ′)µ(θ)πt(x1|θ′)

)
.

Using the indifference condition at (x1, t
′), we can replace 0 on the LHS and get

1∑
θ σ(t

′|θ)µ(θ)πt′(x1|θ)

(∑
θ∈A

µ(θ)σ(t′|θ)πt′(x1|θ)−
∑
θ′∈R

µ(θ′)σ(t′|θ′)πt′(x1|θ′)

)

>
1∑

θ σ(t
′|θ)µ(θ)πt(x1|θ)

(∑
θ∈A

σ(t′|θ)µ(θ)πt(x1|θ)−
∑
θ′∈R

σ(t′|θ′)µ(θ)πt(x1|θ′)

)

But because t is more difficult than t′, we have µ(θ|x1, t) ⪰FOSD µ(θ|x1, t
′). Thus we get a

contradiction.

A.7 Proof of Proposition 6

I will use the following lemma. This result generalises the observation that the DM can find a
strategy with lower type-I and -II errors when t ⪰ t′ (Blackwell informativeness order) to t ⪰θ t

′.

Lemma 3. For any t ⪰θ t
′ and α(·, t′), there is α(·, t) such that∑

x

α(x, t)πt(x|θ) ≥
∑
x

α(x, t′)πt′(x|θ)

for all θ′ ∈ R,
∑
x

α(x, t)πt(x|θ′) ≤
∑
x

α(x, t′)πt′(x|θ′)
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Proof. We can prove this lemma by using a theorem of the alternative (see e.g., Rockafellar (2015)
Section 22). Only one of the following statements is true:

• There exists α(·, t) such that ∑
x

α(x, t)πt(x|θ) ≥
∑
x

α(x, t′)πt′(x|θ)

for all θ′ ∈ R,
∑
x

α(x, t)πt(x|θ′) ≤
∑
x

α(x, t′)πt′(x|θ′)

for all x ∈ X, α(x, t) ≤ 1

for all x ∈ X, α(x, t) ≥ 0

• There exists z, y ≥ 0 such that

for all x ∈ X, − zθπt(x|θ) +
∑
θ′∈R

zθ′πt(x|θ′) + yx ≥ 0 (6)

− zθ
∑
x′

α(x′, t′)πt′(x
′|θ) +

∑
θ′∈R

zθ′
∑
x′

α(x′, t′)πt′(x
′|θ′) +

∑
x′

yx′ < 0

(7)

Take inequality (6) from the second alternative and multiply by β(x, x′) as described in Definition 4
and sum over x ∈ X:

−zθ
∑
x

β(x, x′)πt(x|θ) +
∑
θ′∈R

zθ′
∑
x

β(x, x′)πt(x|θ′) +
∑
x

β(x, x′)yx ≥ 0

Because t ⪰θ t
′, we get for all x′ ∈ X ,

−zθπt′(x
′|θ) +

∑
θ′∈R

zθ′πt′(x
′|θ′) +

∑
x

β(x, x′)yx ≥ 0

We can then multiply by α(x′, t′) and sum over x′ ∈ X:

−zθ
∑
x′

α(x′, t′)πt(x
′|θ) +

∑
θ′∈R

zθ′
∑
x′

α(x′, t′)πt′(x
′|θ′) +

∑
x,x′

α(x′, t′)β(x, x′)yx ≥ 0 (8)

Because
∑

x′ β(x, x′) ≤ 1 and α(x′, t′) ≤ 1 for all x′ ∈ X , we have
∑

x,x′ α(x′, t′)β(x, x′)yx ≤∑
x yx. Therefore, the inequality (7) cannot hold and the first alternative holds.

With this result in hand, we can now prove our result. Suppose that t is not part of the optimal
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menu. Thus we can find an solution of the max-min problem, (α, σA) ∈ argmaxα′,σA′ minσR v(α′, σA′
, σR)

with σ(t|θ) = 0 for all θ ∈ A. Take a test t′ used in the solution by some θ ∈ A. Then from
Lemma 3, we can construct a (α̃, σ̃A) such that pt(α̃; θ) ≥ pt′(α; θ), pt(α̃; θ′) ≤ pt′(α; θ

′) for all
θ′ ∈ R, σ̃(t|θ) = 1 and σ̃ = σ otherwise. This strategy constitutes a solution to the max-min
problem.

A.8 Proof of Proposition 7

Suppose e(t, θ) = {θ′ : θ′ ≤t θ}. Denote by θt a type such that θt ≤t θ for all θ. Take an equilib-
rium with productive communication and only one test is used. I will show that this equilibrium
must be payoff equivalent to a setting where all types send the same message and choose different
tests. If α(L, t, c) = α(H, t, c) ∈ {0, 1}, this strategy would give either a strict incentive to all
types to choose message c or a strict incentive not to choose it. Suppose it is not the case. After
any message c and test t, there are four possibilities.

(1) if α(L, t, c) > α(H, t, c), all types sending message c have a strict incentive to copy θt and
this strategy is equilibrium behaviour only if

∑
θ∈A µ(θ)σ(t, c, θt|θ) =

∑
θ∈R µ(θ)σ(t, c, θt|θ).

(2) if 0 < α(L, t, c) = α(H, t, c) < 1, it must hold that
∑

θ∈A
∑

θ′∈e(t,θ) µ(θ)σ(t, c, θ
′|θ) =∑

θ∈R
∑

θ′∈e(t,θ) µ(θ)σ(t, c, θ
′|θ).

(3) if 0 < α(L, t, c) < α(H, t, c) < 1, then it is a strictly dominant strategy to copy itself for
any type. It also has to be that

∑
θ∈A µ(θ)σ(t, c, θ|θ)πt(x|θ) =

∑
θ∈R µ(θ)σ(t, c, θ|θ)πt(x|θ) for

x = L,H .
(4) if 0 ≤ α(L, t, c) < α(H, t, c) ≤ 1, with at least one equality, then there are two possibilities:

(a) 0 = α(L, t, c) < α(H, t, c) ≤ 1

(b) 0 < α(L, t, c) < α(H, t, c) = 1.
Note that there cannot be two messages c, c′ that are in case (4) as one would message would

strictly dominate the other for any type.
In both case (1) and (2), the acceptance probability is the same for each type. So if we have

two messages in case (1) and (2), respectively, say c1, c2, either one message dominates the other
or we can construct another equilibrium where all types that sent c1 now send c2 and copy θt. This
new strategy would not change any player’s payoffs or incentives because we have added an equal
mass of A and R-types.

Let c3, c4 be two messages on path such that we are in case (3) and (4). Note that it must always
be that if pt,c4(α; θ) ≥ pt,c3(α; θ), then pt,c4(α; θ

′) > pt,c3(α; θ
′) for all θ′ ≥t θ.

Suppose there is a solution (α, σ) to the max-min problem where only test t is chosen and only
one message in case (1) or (2) and one message in case (4). Let θ∗ be the largest type sending a
message in case (3) and c∗ a message in case (3) θ∗ is sending. Let c4 the message in case (4).
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There is another solution to the max-min problem (α′, σ′) where the DM picks an arbitrary test
t′ and sets α′(L, t′, c) = α′(H, t′, c) = pt,c∗(α; θ

∗) and α′(x, t, c) = α(x, t, c4). All types θ ≥t θ
∗

choose σ′(t, c|θ) = σ(t, c4|θ). All types θ ≤t θ
∗ choose σ′(t′, c|θ) =

∑
c′ ̸=c4

σ(t, c′|θ).
For all message c′ ̸= c4, we have

∑
θ∈A µ(θ)σ(t, c′, θ|θ) =

∑
θ∈R µ(θ)σ(t, c′, θ|θ), thus, we

also have
∑

c′ ̸=c4

∑
θ∈A µ(θ)σ(t, c′, θ|θ) =

∑
c′ ̸=c4

∑
θ∈R µ(θ)σ(t, c′, θ|θ). Therefore, setting a

constant acceptance probability after (t′, c) gives the same payoff to the DM than under the original
solution. For all types θ ≤t θ

∗ choosing (t′, c) gives weakly higher payoffs and σ′ is therefore also
a solution to the max-min problem.

The payoffs from (t, c4) under the original solution to the max-min problem are the same as
the payoffs from (t, c) under the new solution for all players. Therefore, we have constructed a
new solution to the max-min problem where only one message is sent. The example in Section 3
shows that there are cases where the DM can stictly benefit from a menu.

Suppose that e(t, θ) = {θ} for all t ∈ T . The result follows from Lemma 2. If a Blackwell
dominated test is chosen by an A-type, then we can introduce a message test pair (c, t) in the
max-min problem that will make the A-type better off without making any R-type better off. This
deviation will create a new solution to max-min problem.
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B Online Appendix: Omitted proofs

B.1 Proof of Proposition 4

(⇒) The proof is similar to the one in Milgrom (1981). Denote by Gt(·|x) the cdf of posterior
beliefs after signal x in test t. For all θ > θ′,

µ(θ)
πt(x|θ)
πt(x|θ′)

≥ µ(θ)
πt′(x|θ)
πt′(x|θ′)

Take some θ∗ ≥ θ′. Summing over θ, we get

∑
θ>θ∗

µ(θ)
πt(x|θ)
πt(x|θ′)

≥
∑
θ>θ∗

µ(θ)
πt′(x|θ)
πt′(x|θ′)

Inverting and summing over θ′, we get∑
θ∗≥θ′ µ(θ

′)πt(x|θ′)∑
θ>θ∗ µ(θ)πt(x|θ)

≤
∑

θ∗≥θ′ µ(θ
′)πt′(x|θ′)∑

θ>θ∗ µ(θ)πt′(x|θ)

which implies

Gt(θ
∗|x)

1−Gt(θ∗|x)
≤ Gt′(θ

∗|x)
1−Gt′(θ∗|x)

⇒ Gt(θ
∗|x) ≤ Gt′(θ

∗|x)

(⇐) Take θ > θ′ and let µ(θ) + µ(θ′) = 1 (i.e., there is probability zero on other types). If
µ(·|t, x) ⪰FOSD µ(·|t′, x), then we have µ(θ|t, x) ≥ µ(θ|t′, x) and µ(θ′|t, x) ≤ µ(θ′|t′, x). By
Bayes’ rule these inequalities imply πt(x|θ)

πt′ (x|θ)
≥

∑
θ′′ µ(θ

′′)πt(x|θ′′)∑
θ′′ µ(θ

′′)πt′ (x|θ′′)
and πt(x|θ′)

πt′ (x|θ′)
≤

∑
θ′′ µ(θ

′′)πt(x|θ′′)∑
θ′′ µ(θ

′′)πt′ (x|θ′′)
.

Rearranging, we obtain πt(x|θ)
πt(x|θ′) ≥

πt′ (x|θ)
πt′ (x|θ′)

.

B.2 Proof of Theorem 2

The proof follows closely the one of Theorem 1. Let T ′ = {(t, c) : t ∈ T, c ∈ C}. To simplify the
notation, I will study the problem using T ′ as the set of feasible test. The problem the DM needs
to solve when committing to α is

max
α

∑
θ∈A

µ(θ)
∑

t∈T ′,θ̃∈e(θ,t)

σ̃(t, θ̃|θ)pt(α; θ̃)−
∑
θ′∈R

µ(θ′)
∑

t∈T ′,θ̃∈e(θ′,t)

σ̃(t, θ̃|θ′)pt(α; θ̃)

s.t. σ̃(·|θ) ∈ argmax
∑

t∈T ′,θ̃∈e(θ,t)

σ(t, θ̃|θ)pt(α; θ̃), for all θ ∈ Θ
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Therefore,
∑

t,θ̃ σ̃(t, θ̃|θ)pt(α; θ̃) = maxσ(·|θ)
∑

t,θ̃ σ(t, θ̃|θ)pt(α; θ̃) for all θ. We can plug this
expression in the DM’s maximisation problem to obtain

max
α

max
σA

min
σR

∑
θ∈A

µ(θ)
∑
t,θ̃

σ(t, θ̃|θ)pt(α; θ̃)−
∑
θ′∈R

µ(θ′)
∑
t,θ̃

σ(t, θ̃|θ′)pt(α; θ̃)

where the min is obtained because of the minus sign.
Let (α, σA) ∈ argmaxα̃,σ̃A minσ̃R v(α̃, σ̃A, σ̃R) and σR ∈ argminσ̃R maxα̃ v(α̃, σ

A, σ̃R). Note
that σA is fixed in the min-max problem. I will now show that these strategies are equilibrium
strategies.

Because the order of maximisation does not matter, σA ∈ argmaxmin v(α, σ̃A, σ̃R). More-
over, σA ∈ argmax v(α, σ̃A, σR) ⇔

∑
t,θ̃ σ(t, θ̃|θ)pt(α; θ̃) ≥

∑
t,θ̃ σ̃(t, θ̃|θ)pt(α; θ̃) for all θ ∈ A

and σ̃A. This last expression does not depend σR. Therefore, σA ∈ argmax v(α, σ̃A, σR).
Similarly, α ∈ argmaxmin v(α̃, σA, σ̃R). Because v is linear in both α and σR and that the

set of strategies are convex, (α, σR) is a saddle-point of v(·, σA, ·) by the minimax theorem. As for
σA, σR ∈ argmin v(α, σA, σ̃R) ⇔

∑
t∈T σ(t|θ)pt(α; θ) ≥

∑
t∈T σ̃(t|θ)pt(α; θ) for all θ ∈ R and

σ̃R. Therefore all strategies are best-reply.
Beliefs on-path are formed using Bayes’ rule and off-path beliefs are chosen to justify the

off-path actions of α (this is always possible to find as any action is best-reply to some beliefs).
Note also that we can without loss of generality take σA to be in pure strategy as it is maximises

a linear function.
The only thing we need prove is that it is optimal to have a different message for each type

θ ∈ A, the rest follows from Theorem 1. Suppose it is not the case and take a solution (α, σA) of
the max-min problem where the A-types play a pure strategy.

Then, there is θ1, θ2 ∈ A and (t, c) ∈ T × C such that σ(t, c, θ̃1|θ1) = σ(t, c, θ̃1|θ2) = 1 (if
they use a different test then we can also change the message and nothing is changed). Consider
the alternative strategy α′ where, for some unused (t, c′) in the original mechanism, α′(t, c′, x) =

α(t, c, x) for all x ∈ X and α′(t′′, c′′, x) = α′(t′′, c′′, x) for all other (t′′, c′′) ∈ T ×C and all x ∈ X

otherwise. The new strategy α′ is thus the same as α but makes sure that if the pair (t, c′) is chosen,
it uses the same actions as (t, c). Now consider the following strategy σ̃A in the auxiliary max-min
problem, σ̃(·|θ) = σ(·|θ) for θ ̸= θ1 and σ̃(t, c′|θ1) = 1. This strategy gives the same value in the
max-min problem as under (α, σA). Moreover, any deviations under α′ gives the same payoff than
under α. Therefore, (α′, σ̃A) is an solution to problem with commitment.
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C Online Appendix: Bidimensional environments

In this subsection, I apply the tools of Theorem 1 to study environments with bidimensional types.
The analysis here can be easily extended to more than two dimensions. I assume that the DM has
access to tests that are informative about only one dimension and that the preference of the DM
is monotonic along each dimension. I use the following convention to compare elements of R2:
(θ1, θ2) ≥ (θ′1, θ

′
2) if θi ≥ θ′i for i = 1, 2.

Definition 5. An environment is bidimensional if Θ = Θ1 × Θ2 ⊂ R2, X ⊂ R and T = {t1, t2}
such that for i = 1, 2,

• if θ ∈ A, then for all θ′ ≥ θ, θ′ ∈ A

• ti has full support and for all θi > θ′i,

πti(x|θi, θj)
πti(x|θ′i, θj)

is strictly increasing in x for any θj ∈ Θj

• πti(x|θi, θj) = πti(x|θi, θ′j) for all θj, θ′j ∈ Θj and x ∈ X

This class of test technology is related to Glazer and Rubinstein (2004) and Carroll and Egorov
(2019) who also study test allocation in multidimensional environments although the results have
a different focus.25 The first condition captures the idea that a higher type is always better for
the DM. The second and third conditions capture the idea that each test is informative about only
one dimension and that a higher signal corresponds to a higher type in that dimension. I restrict
attention to the case where only two tests, one for each dimension, are available to the DM.

In this environment, whether the DM wants to offer a menu containing both tests depends
crucially on his preferences. In particular, I give a necessary and sufficient condition on the pref-
erences such that a full menu is optimal for any prior, i.e., a menu containing both tests. Let
θi = maxΘi.

Proposition 8. Suppose we are in a bidimensional environment. Offering a menu {t1, t2} is strictly

optimal for any prior if and only if

for i = 1, 2, (θi, θj) ∈ A, for all θj ∈ Θj. (9)
25Both papers allow for possibly random mechanisms but restrict attention to full revelation of the dimension

tested. Glazer and Rubinstein (2004) introduced this environment and characterised the optimal mechanism. Carroll
and Egorov (2019) study when the DM can achieve full learning in a setup with more general payoffs. Their condition
for full learning is not related to the condition for optimality of having both tests in the menu in Proposition 8.
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(a) Full menu always optimal. (b) Full menu not always optimal.

Figure 2: Illustration of DM’s preferences for Proposition 8.

The proof of Proposition 8 works by showing that a deviation from a single test menu is always
profitable when condition (9) is satisfied and constructs a prior under which there are no profitable
deviations when the condition is not satisfied.

Figure 2 illustrates the condition of Proposition 8 with Θ ⊂ [0, 1]2. In Figure 2a, the DM wants
the agent’s type to be high enough in at least one dimension. Then the DM always prefers to offer
a full menu to the agent. On the other hand, in Figure 2b, the DM does not want to accept a type
that is high in only one dimension. In this case, for some prior, the DM wants to offer only one
test. This happens when after any deviation from the singleton menu any A-type is mimicked by
too many R-types that cannot be distinguished from him. Finally, note that condition (9) is not
related to the complementarity or substitutability of the two dimensions. The key condition is that
the highest types in both dimensions are A-types.

Proof. Suppose condition (9) holds.

Suppose that all types choose the same test testing dimension j. Take (θ̃i, θ̃j) ∈ argminθ∈A ptj(α; θ).
Because ptj(α; θi, θj) is constant in θi, we have (θi, θ̃j) ∈ argminθ∈Θ ptj(α; θ) as well and from
condition (9), (θi, θ̃j) ∈ A. Consider the deviation in the problem with commitment to (α̃, s̃) such
that for ti,

• α̃(·, ti) is set so that it has a cutoff structure and pti(α̃; θi, θ̃j) = ptj(α; θi, θ̃j)+ϵ and α̃(·, tj) =
α(·, tj) otherwise.

• σ̃(ti|θi, θ̃j) = 1 and σ̃(·|θ) = σ(·|θ) otherwise.

Because the test ti has the strict MLRP when restricting attention to dimension i, for all θi <
θi, pti(α̃; θi, θj) = minθ∈Θ ptj(α; θ) + ϵ > pti(α̃; θi, θj). Therefore, for θi < θi, ptj(α; θ) >
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pti(α̃; θi, θj) if ϵ is small enough. These inequalities imply that no other type has an incentive to
choose test i but (θi, θ̃j) ∈ A is accepted with strictly higher probability. Thus the menu with only
test j cannot be the optimal menu.

Suppose condition (9) does not hold.

If condition (9) is not satisfied, then there a dimension, say 1, and θ̃2 ∈ Θ2 such that (θ1, θ̃2) ∈
R. By the monotonicity of payoffs in the bidimensional environment, we have that (θ1, θ̃2) ∈ R

for all θ1 ∈ Θ1. Moreover, for all θ2 < θ̃2 and all θ1 ∈ Θ1, (θ1, θ2) ∈ R.
Now suppose µ is such that µ(θ1, θ̃2) >

∑
θ′2 ̸=θ2

µ(θ1, θ
′
2) for all θ1 ∈ Θ1. And that µ(θ1, θ2) ≈

0 for all (θ1, θ2) ∈ R such that θ2 > θ̃2.
I am going to show that {t2} is optimal when t1 fully reveals dimension 1. Because this test can

replicate the strategies of any t1, it is enough to prove our claim. Suppose there is an optimal menu
{t1, t2}. From our assumptions on µ, the DM follows a cutoff strategy after t2. That’s because
his payoff is monotone along that dimension, ignoring (θ1, θ2) ∈ R such that θ2 > θ̃2 whose prior
probability is close to zero. So it does not upset the cutoff structure of the best-response. The
cutoff strategy implies that pt2(α; θ1, θ2) > pt2(α; θ1, θ̃2) for all θ2 > θ̃2 because the likelihood
ratio is strictly increasing.

Suppose that some (θ1, θ̃2) chooses t1 with probability 1 in equilibrium. Because µ(θ1, θ̃2) >∑
θ′2 ̸=θ2

µ(θ1, θ
′
2) for all θ1 ∈ Θ1, it must be that the best-response is α(x = θ1, t1) = 0 (recall

that t1 fully reveals θ1). Thus pt2(α; θ1, θ2) = 0 for all θ2 ∈ Θ2, otherwise there is a profitable
deviation. Either this contradicts the fact that the DM best replies or in equilibrium the DM rejects
after all signals in every test. But then he is weakly better off only offering t2.

Thus to have {t1, t2} strictly better, it must be that all (θ1, θ̃2) choosing t1 mix in equilibrium.
This mixing means that pt1(α; θ1, θ̃2) = pt2(α; θ1, θ̃2). But by the cutoff structure of α(·, t2) and the
strict MLRP assumption, we have pt2(α; θ1, θ2) > pt2(α; θ1, θ̃2) for all θ2 > θ̃2 and pt2(α; θ1, θ2) <

pt2(α; θ1, θ̃2) for all θ2 < θ̃2. Thus t2 is strictly preferred for all (θ1, θ2) ∈ A. Thus choosing only
{t2} is an optimal menu.

D Online Appendix: Mechanism and randomisation

So far we have restricted attention to menus of tests. But the DM could potentially use a more
elaborate mechanism to allocate tests to agents, possibly randomly. I define a mechanism τ :

Θ → ∆T , a possibly random mapping from type report to distribution over tests. A strategy for
the DM remains a mapping from test allocation and signal realisation to an acceptance decision,
α : T ×X → [0, 1], and the agent’s strategy is a mapping from type to type report. I assume that
the DM cannot observe the type report but we can naturally extend the mechanism τ to allow for
output messages in the spirit of Section 6. Standard revelation principle arguments show that it is
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without loss of generality to restrict attention to type reports.
The DM’s problem is now to maximise his expected payoff subject to incentive-compatibility

constraints. In the baseline model, the DM cannot commit to its strategy α. Let BR(τ) := {α :

Eα,τ [v(a, θ)] ≥ Eα′,τ [v(a, θ)], for all α′}, the set of best-replies when the mechanism is τ . The
DM’s problem is

max
τ,α

∑
θ∈A

µ(θ)
∑
t

τ(t|θ)pt(α; θ)−
∑
θ∈R

µ(θ)
∑
t

τ(t|θ)pt(α; θ)

s.t.
∑
t

(τ(t|θ)− τ(t|θ′))pt(α; θ) ≥ 0 for all θ, θ′

α ∈ BR(τ)

The first constraint is the incentive-compatibility constraint of type θ deviating to θ′ and the sec-
ond constraint ensures that the DM best replies to the information revealed by the output of the
mechanism.26

By using a mechanism, the agent can be randomly allocated to different tests without being
indifferent between them. On the other hand, when restricting attention to menus, the agent has
to be indifferent between tests if he randomises over tests. In the following example (inspired by
Glazer and Rubinstein, 2004), I show that access to a mechanism can strictly improve the DM’s
payoffs.

Example (Randomised allocation). Suppose there are six types Θ = {(θ1, θ2, θ3) : θi = 0, 1, 1 ≤
θ1 + θ2 + θ3 ≤ 2} and A = {(θ1, θ2, θ3) : θ1 + θ2 + θ3 = 2}. The DM has access to three tests,
each perfectly revealing one dimension: T = {1, 2, 3} with πt(x = θt|θ) = 1. The prior µ is
uniform. At the optimum, the DM accepts when the signal is equal to 1. The optimal mechanism
τ allocates each A-type with probability 1/2 to each test where their dimension is equal to 1. Each
R-type is allocated with probability 1/2 to the dimension where it has value 1 and 1/4 in the other
dimensions.

This mechanism accepts A-types with probability one and accepts R-types with probability
1/2. In particular, the mechanism randomises the allocation of R-types over tests they are not
indifferent between. If the DM could use only a menu, the R-types would always choose the test
that reveals their dimension equal to one. Thus any menus and strategies that accept R-types with
probability 1/2 must also accept A-types with probability 1/2.

I now show that the optimal mechanism can also be characterised by a max-min problem and
the DM does not benefit from commitment.

26This definition does not put constraints on off-path optimality, but because any strategy is a best-reply to some
beliefs, satisfying BR(τ) will lead to a weak PBE.
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To set up the characterisation of the optimal mechanism, let s : A → ∆T and m : R → ∆A,
and abusing notation, let α : T ×X → [0, 1] and

v(α, s,m) ≡
∑
θ∈A

∑
t∈T

s(t|θ)
[
µ(θ)pt(α; θ)−

∑
θ′∈R

µ(θ′)m(θ|θ′)pt(α; θ′)
]

(10)

=
∑
θ∈A

∑
t∈T

µ(θ)s(t|θ)pt(α; θ)−
∑
θ′∈R

µ(θ′)
∑
θ∈A

m(θ|θ′)
∑
t∈T

s(t|θ)pt(α; θ′)

The function s can be interpreted as A-types choosing a test, m as R-types choosing an A-type to
mimic, and α as the DM accepting the agent after a test and signal realisation. The function v is
then the DM’s expected payoffs from a distribution over tests induced by the pair (s,m). I explain
these objects in more detail in the discussion of Theorem 3.

Theorem 3. The value of an optimal mechanism is

V = max
α,s

min
m

v(α, s,m) (11)

For any (α, s) ∈ argmaxα̃,s̃ minm̃ v(α̃, s̃, m̃) and m ∈ argminm̃ maxα̃ v(α̃, s, m̃), an optimal

mechanism is

• for θ ∈ A : τ(t|θ) = s(t|θ)

• for θ′ ∈ R : τ(t|θ′) =
∑

θ∈A m(θ|θ′)τ(t|θ)

• the DM’s strategy is α

Moreover, the DM does not benefit from committing to α.

Theorem 3 provides another characterisation of the optimal mechanism in terms of a max-
min problem. As in Theorem 1, the that commitment has no value follows from the max-min
structure of the characterisation. To understand the structure of this max-min problem better,
consider the objective function v for a fixed α. This can be interpreted as a zero-sum game where
where the maximiser, the A-types, chooses s : A → ∆T and the minimiser, the R-types, chooses
m : R → ∆A. The payoffs of a given A-type θ choosing test t and a given R-type, θ′, choosing an
A-type θ̃ can be expressed as:

for θ ∈ A choosing t, µ(θ)pt(α; θ)−
∑
θ′∈R

µ(θ′)m(θ|θ′)pt(α; θ′)

for θ′ ∈ R choosing θ̃, µ(θ′)
∑
t

s(t|θ̃)pt(α; θ′)−
∑
θ∈A,t

µ(θ)s(t|θ)pt(α; θ)
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In the payoffs of the R-type, his strategy, the choice of θ̃, affects only the first part of the payoffs. So
the R-type is effectively trying to maximise his probability of being accepted. On the other hand,
the A-types maximise a modified version of their utility where they maximise their probability
of being accepted while being penalised every time a R-type mimics them and is accepted. The
A-types’ utility is thus modified to align it with the DM’s payoffs. The induced distribution over
tests determines the optimal mechanism when strategy α is used.

It is worth noting that given the max-min structure of the optimal mechanism, the DM can also
benefit from allocating agents to dominated tests under the same conditions as in Section 4.1.

Proof. The designer’s problem is

max
τ,α

∑
θ∈A

µ(θ)
∑
t

τ(t|θ)pt(α; θ)−
∑
θ∈R

µ(θ)
∑
t

τ(t|θ)pt(α; θ)

s.t.
∑
t

(τ(t|θ)− τ(t|θ′))pt(α; θ) ≥ 0 for all θ, θ′

α ∈ BR(τ)

If the DM could commit over a strategy α, his problem would be

Ṽ (α) = max
τ

∑
θ∈A

µ(θ)
∑
t

τ(t|θ)pt(α; θ)−
∑
θ∈R

µ(θ)
∑
t

τ(t|θ)pt(α; θ)

s.t.
∑
t

(τ(t|θ)− τ(t|θ′))pt(α; θ) ≥ 0 for all θ, θ′

Step 1: Show that Ṽ (α) = maxs minm v(α, s,m) where v is defined in (10).
To show this claim, I am going to relax the mechanism design problem by restricting attention

to the IC constraints of R-types deviating to reporting an A-type:

Ṽ (α) = max
τ

∑
θ∈A

µ(θ)
∑
t

τ(t|θ)pt(α; θ)−
∑
θ∈R

µ(θ)
∑
t

τ(t|θ)pt(α; θ)

s.t.
∑
t

τ(t|θ)pt(α; θ) ≥ max
m(·|θ)

∑
θ′∈A

m(θ′|θ)
∑
t

τ(t|θ′)pt(α; θ), for all θ ∈ R

The IC constraints are written to express that reporting type θ for θ ∈ R is better than any other
reporting strategy over the A-types.

Now note that if an IC constraint is slack at the optimum, we could improve the DM’s payoff
by setting τ(t|θ) =

∑
θ′∈A m∗(θ′|θ)τ(t|θ′) with

m∗ ∈ argmax
m(·|θ)

∑
θ′∈A

m(θ′|θ)
∑
t

τ(t|θ′)pt(α; θ).
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That would reduce the probability of type θ ∈ R of being accepted and would not change any other
constraints in the relaxed problem. Thus at the optimum,∑

t

τ(t|θ)pt(α; θ) ≥ max
m(·|θ)

∑
θ′∈A

m(θ′|θ)
∑
t

τ(t|θ′)pt(α; θ).

We can plug this expression in the payoffs to get

Ṽ (α) = max
τ

∑
θ∈A

µ(θ)
∑
t

τ(t|θ)pt(α; θ)−
∑
θ∈R

µ(θ) max
m(·|θ)

∑
θ′∈A

m(θ′|θ)
∑
t

τ(t|θ′)pt(α; θ)

= max
τ

min
m

∑
θ∈A

µ(θ)
∑
t

τ(t|θ)pt(α; θ)−
∑
θ∈R

µ(θ)
∑
θ′∈A

m(θ′|θ)
∑
t

τ(t|θ′)pt(α; θ)

Note that we can take out the max of the summation by the linearity of the expression in m and
it becomes a min because of the minus sign. This expression also corresponds to v as defined in
(10).

It remains to show that the solution of this relaxed mechanism is indeed optimal. Take s ∈
argmaxminm̃ v(α, s̃, m̃) and m ∈ argmin v(α, s, m̃) and define the optimal mechanism by

• τ(t|θ) = s(t|θ) for θ ∈ A

• τ(t|θ′) =
∑

θ∈A m(θ|θ′)s(t|θ) for θ′ ∈ R

Note that an outcome of this mechanism gives payoff weakly higher than maxs̃minm̃ v(α, s̃, m̃) as
v(α, s,m) ≥ minm̃ v(α, s, m̃). Thus if it is incentive-compatible, it must be actually equal to the
upper bound maxs̃ minm̃ v(α, s̃, m̃).

Note that all allocations are either allocations of A-types or convex combinations of the A-
types’ allocations thus it is enough to check that no type has any incentive to report any A-type in
the mechanism.

By definition of m,
v(α, s,m) ≥ v(α, s,m′), for all m′

Therefore, for each R-type, θ′,∑
θ∈A

m(θ|θ′)
∑
t

τ(t|θ)pt(α; θ′) ≥
∑
t

τ(t|θ̃)pt(α; θ′), for any θ̃ ∈ A

For an A-type θ, consider the choice of choosing s̃ such as s̃(·|θ) = s(·|θ̃) for some θ̃ ∈ A and
the same otherwise. By definition of s,

v(α, s,m) = min
m̃

v(α, s, m̃) ≥ min
m̃

v(α, s̃, m̃)
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Rearranging,

µ(θ)
∑
t

(
s(t|θ)− s(t|θ̃)

)
pt(α; θ) ≥ max

m̃

∑
θ′∈R

µ(θ′)
∑
θ′′∈A

m̃(θ′′|θ′)
∑
t

s(t|θ)pt(α; θ′)

−max
m̃

∑
θ′∈R

µ(θ′)
∑
θ′′∈A

m̃(θ′′|θ′)
∑
t

s̃(t|θ)pt(α; θ′)

where the min is transformed in max because of the negative sign. Note that the LHS is the IC
constrain of type θ deviating to type θ̃. The RHS is the difference in the probability of the R-types
of being accepted when they choose a mimicking strategy m̃. Note that the only difference between
s and s̃, from their point of view, is that there is weakly less choice of allocations to mimic because
we have θ choosing the same allocation as θ̃. Therefore it must be that the RHS is positive, which
implies that the LHS is as well.

Step 2: Show that the DM does not benefit from commitment in the optimal mechanism.
Take (α, s) ∈ argmaxα̃,s̃minm̃ v(α̃, s̃, m̃) and m ∈ argminm̃ maxα̃ v(α̃, s, m̃). The α selected

would be the optimal strategy when the DM can commit.
Note that because the order of maximisation does not matter, we also have α ∈ argmaxα̃ minm̃ v(α̃, s, m̃).

Note that v is linear in α̃ and m̃ and thus by the minimax theorem,

v(α, s,m) ≥ v(α′, s,m), for all α′

v(α, s,m) ≤ v(α, s,m′), for all m′

Thus α best-replies to the optimal mechanism when the DM can commit and m is also a best reply
to (α, s), thus satisfying the condition for characterising the equilibrium in Step 1.

E Online Appendix: Additional max-min characterisation re-
sult

The goal of this section is to show how the max-min characterisation can be useful to show that
commitment has no value in environments where payoffs are not necessarily linear in strategies or
the strategy space is not convex. In particular, I show that we can still have a similar result as in
Theorem 1 if we restrict attention to DM strategies that take a cutoff form.

I assume the following. The set of signals is X ⊂ R and any DM strategy is a member of the
set of cutoff strategies C = {α : for all t ∈ T, x′ > x, α(x, t) > 0 ⇒ α(x′, t) = 1}. Note that
C is a compact subset of R|X| × R|T |. However, it is not convex.27 For the next result, I will also

27This cutoff strategy can be viewed as a subset of R for each test but then the payoffs are not linear or concave in
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assume that the testing technology is simple and consists of two tests, T = {t, t′}.

Proposition 9. Suppose X ⊂ R and T = {t, t′}. Suppose also that the DM is restricted to using

cutoff strategies.

For any (α, σA) ∈ argmaxα̃∈C,σ̃A minσ̃R v(α̃, σ̃A, σ̃R), an optimal menu is

M = ∪θ∈A suppσ(·|θ).

Additionally, for any σR ∈ argminσ̃R maxα̃∈C v(α̃, σA, σ̃R), (α, σA, σR) are the strategies in the

corresponding DM-preferred equilibrium.

Moreover, the DM does not benefit from commitment.

Proof. The proof follows identical lines as the proof of Theorem 1. The only difference is that
we cannot apply the minimax theorem in the zero-sum game between the R-types and the DM. To
prove the Nash Equilibrium of this game exists, I will use techniques that rely on the monotonicity
of the best-reply correspondences.

We endow the set C with the following partial order:

α ≥C α′ ⇔ α(x, t) ≤ α′(x, t) and α(x, t′) ≥ α′(x, t′), for all x ∈ X.

Note that for any α, α′ ∈ C, either α(x, t) ≥ α′(x, t) for all x ∈ X or α(x, t) ≤ α′(x, t) for all
x ∈ X , i.e., in the test t, either the cutoff to accepting is lower in α or in α′.

We endow ΣR = {σ : R → ∆T} with the following partial order

σ ≥R σ′ ⇔ σ(t|θ) ≥ σ′(t|θ), for all θ ∈ R.

Recall that T is binary so this guarantees that ≥I is antisymmetric. It is also transitive and reflexive
and is therefore a partial order.

Both (C,≥C) and (ΣR,≥R) are lattices.
Let BRR(α) and BRD(σ) denote the best-reply correspondences of the R-types and the DM.

These correspondences are not empty because each player maximises a continuous function over
a compact domain.

Abusing notation, denote by v(α, σ) with σ ∈ ΣR, the payoffs of the DM when the strategies of
the A-types is fixed. Let v(α, σ|t) be the payoffs in test t. I will now show that v(α, σ) satisfies the
single-crossing property in (α;σ) (Milgrom and Shannon, 1994): for any σ′ ≥R σ and α′ ≥C α,
v(α′, σ) ≥ (>)v(α, σ) ⇒ v(α′, σ′) ≥ (>)v(α, σ′).

α.
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Let δ(θ) = σ′(t|θ)− σ(t|θ) ≥ 0. We want to show that

∑
t̃=t,t′

∑
θ∈A

µ(θ)σ′(t̃|θ)pt̃(α′; θ)−
∑
θ∈R

µ(θ)σ′(t̃|θ)pt̃(α′; θ)

≥
∑
t̃=t,t′

∑
θ∈A

µ(θ)σ′(t̃|θ)pt̃(α; θ)−
∑
θ∈R

µ(θ)σ′(t̃|θ)pt̃(α; θ). (12)

This holds because

∑
t̃=t,t′

∑
θ∈A

µ(θ)σ(t̃|θ)pt̃(α′; θ)−
∑
θ∈R

µ(θ)σ(t̃|θ)pt̃(α′; θ)

≥
∑
t̃=t,t′

∑
θ∈A

µ(θ)σ(t̃|θ)pt̃(α; θ)−
∑
θ∈R

µ(θ)σ(t̃|θ)pt̃(α; θ) (13)

Moreover, because α′(x, t′) ≥ α(x, t′) and α′(x, t) ≤ α(x, t), we have,

−
∑
θ∈R

µ(θ)δ(θ)pt(α
′; θ) ≥ −

∑
θ∈R

µ(θ)δ(θ)pt(α; θ), (14)∑
θ∈R

µ(θ)δ(θ)pt′(α
′; θ) ≥

∑
θ∈R

µ(θ)δ(θ)pt′(α; θ). (15)

Summing (13), (14) and (15), we get inequality (12). If (13) holds strictly, then (12) holds strictly
as well.

Next, I show that v(α, σ) is quasi-supermodular in α: v(α, σ) ≥ (>)v(α ∧ α′, σ) ⇒ v(α ∨
α′, σ) ≥ (>)v(α′, σ). This follows directly from the fact that v(α, σ) is linear in α and therefore

∂2v(α,σ)

∂α(x,t̃)∂α(x′,t̃′)
= 0. The order ≥C is a variation of the usual order on R|X| × R|T | and therefore

v(α, σ) is supermodular (Topkis, 1978). This implies it is quasi-supermodular.
We now claim that −v(α, σ) has the single-crossing property in (σ;α) and is quasi-supermodular

in σ. The proof of single-crossing property works exactly in the same way as for the single crossing
property of v(α, σ) in (α;σ). We can set write α(x, t̃) = α′(x, t̃) + δ(x, t̃) for t̃ = t, t′ and follow
the same steps. Quasi-supermodularity follows from the linearity of −v(α, σ).

We have shown that the game satisfies the condition in Milgrom and Shannon (1994) for equi-
librium existence: (1) each player’s strategy space is a compact lattice, (2) the payoff function is
continuous in (α, σ) and (3) the payoff function is quasi-supermodular in the own strategy and
satisfies the single crossing properties just shown. Thus an equilibrium exists.

In this zero-sum game, it implies that maxα∈C minσR v(α, σA, σR) = minσR maxα∈C v(α, σA, σR).
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F Online Appendix: Generalisations of Proposition 1 to Many
Signals

In this section, I show how the results of Proposition 1 generalise naturally when the DM (1) there
is an order on types such that the dominant test satisfies MLRP and (2) the DM uses an increasing
strategy. Throughout this section, I assume that X ⊂ R.

A test t has an MLRP-order if there is an order ≥M on Θ such that θ ≥M θ′ if and only if for
any x > x′,

πt(x|θ) · πt(x
′|θ′) ≥ πt(x

′|θ) · πt(x|θ′).

The DM’s strategy is increasing if x′ > x ⇒ α(x′, t) ≥ α(x, t) for all t ∈ T . Let I be the set
of increasing strategies. A special type of increasing strategies are cutoff strategies: for any t ∈ T ,
α(x, t) > 0 ⇒ α(x′, t) = 1 for any x′ > x. Denote by C the set of cutoff strategies.

It is worth noting that in this environment, it might not be optimal to use the dominant test as an
increasing strategy might not be adapted to it. However, the optimal menu contains the dominant
test if the unconstrained optimal strategy associated with the dominant test is in fact increasing.

The following result generalises the idea that conditions like (U-2) or (U-3) imply that having
a dominated test in the menu is optimal.

Denote by Ft(x|θ) =
∑

x′≤x πt(x
′|θ) the cdf of πt(·|θ).

Proposition 10. Let X ⊂ R. Suppose there is a test t ⪰ t′ for all t′ ∈ T and that t is MLRP-

ordered with order ≥M . Suppose also that the DM must use an increasing strategy.

Take α ∈ argmaxα′∈I
∑

θ∈A µ(θ)pt(α
′; θ)−

∑
θ∈R µ(θ)pt(α

′; θ) and let x∗ = max{x : α(x, t) =

0}.

If there is θ and θ ∈ A with θ ≤M θ such that

∑
θ∈A,θ≤Mθ

µ(θ)Ft(x
∗|θ)−

∑
θ∈R,θ≤Mθ

µ(θ)Ft(x
∗|θ) ≥ Ft(x

∗|θ)

 ∑
θ∈A,θ≤Mθ

µ(θ)−
∑

θ∈R,θ≤Mθ

µ(θ)

 ,

(U’)
then there is an optimal menu containing some t′ ⪯ t.

If condition (U’) holds for all x ∈ X , then it is always true that an optimal menu containing
some t′ ⪯ t is optimal. Under binary signals, condition (U’) is a version of condition ‘Imprecise
at the bottom’ (U-2) in Proposition 1.

Note also that under the framework of Section 6 with effort and communication, all strategies
must be increasing for the agent to put effort. Therefore, condition (U’) and thus (U-2) in the
binary signal case imply that an optimal menu contains a dominated test.

The intuition for (U’) is the same as ‘Imprecise at the bottom’ (U-2). When using a cutoff
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strategy, the probability of being acepted is pt(α; θ) = 1−Ft(x
∗|θ), i.e., the probability of sending

a signal higher than the cutoff x∗. Condition (U’) is thus also a form of ‘imprecision at the bottom’:
it states that the DM prefers types below θ to be pooled and all have distribution over signals πt(·|θ).
If there is an A-type θ such that θ ≤M θ′ for all θ′ ∈ R, then condition (U’) is satisfied.

Proof. This follows from two observations. First, as argued in the discussion of Theorem 1, as the
set of increasing strategies I is closed and convex, Theorem 1 also holds when restricting attention
to that class of strategies.

Suppose the DM only offers t in the optimal menu and take α ∈ argmaxα′∈I
∑

θ∈A µ(θ)pt(α
′; θ)−∑

θ∈R µ(θ)pt(α
′; θ). The set of step functions: α(x, t) = 1[x > x̃] for some x̃ ∈ X ∪{minX− 1}

is the set of extreme points of the set of increasing functions (see e.g., Lemma 2.7 in Börgers,
2015).28 Because the DM’s payoffs are linear in α when offering only one test, it is without loss of
optimality to take the strategy associated as being a step function with step at x∗ as defined in the
proposition.

Because condition (U’) is satisfied, there is θ and θ ∈ A with θ ≤M θ such that∑
θ∈A,θ≤Mθ

µ(θ) (Ft(x
∗|θ)− Ft(x

∗|θ)) ≥
∑

θ∈R,θ≤Mθ

µ(θ) (Ft(x
∗|θ)− Ft(x

∗|θ)) .

Take any t′ ∈ T and set α′(x, t′) = 1− Ft(x
∗|θ) and α′(·, t) = α(·, t). Because types are MLRP-

ordered, we have that Ft(x
∗|θ) ≥ Ft(x

∗|θ′) for all θ′ >M θ. Therefore, only types θ ≤M θ prefer
to deviate to t′. By condition (U’), we get

∑
θ∈A,θ≤Mθ

µ(θ)pt′(α
′; θ)−

∑
θ∈R,θ≤Mθ

µ(θ)pt′(α
′; θ)

≥
∑

θ∈A,θ≤Mθ

µ(θ)pt(α
′; θ)−

∑
θ∈R,θ≤Mθ

µ(θ)pt(α
′; θ).

Therefore, α′ is a profitable deviation in the max-min problem or another maximum.

We can also combine the ideas of Proposition 2 and Proposition 1 to show that when the
dominant test t is single-peaked with respect to ≥M , i.e., there is θ1, θ2 ∈ A such that A = {θ :

θ1 ≤M θ ≤M θ2}, all equilibria where t is used are payoff equivalent to equilibria where only t

is used. This is the equivalent to showing that if condition (U-1) is not satisfied, a singleton menu
containing t dominates any other menu containing t and other tests. Here we require the DM to
use a cutoff strategy.

28Setting x̃ = minX − 1 allows the DM to always accept.
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Proposition 11. Let X ⊂ R. Suppose there is a test t ⪰ t′ for all t′ ∈ T and that all t′ ∈ T are

MLRP-ordered with order ≥M . Suppose also that the DM must use a cutoff strategy.

If there is θ1, θ2 ∈ A such that A = {θ : θ1 ≤M θ ≤M θ2}, the menu {t} is optimal among the

menus containing t.

Proof. The proof proceeds similarly as the proof to show that if (U-1) is not satisfied, all equilibria
having t on path have the same payoffs as having all types choosing t.

Let α be the strategy used by the DM in some equilibrium. As in the proof of Proposition 2, if
t ⪰ t′ and the DM uses a cutoff strategy, pt(α; θ)− pt′(α; θ) is single-crossing in θ. Suppose there
is some θ, θ′ ∈ A choosing t, t′ respectively. Then the set of types choosing t is such that there is
a cutoff type θ∗ where θ ≤M θ∗ ⇒ θ ∈ A and θ >M θ∗ ⇒ θ ∈ R. Let ≥̃M be the order such
that θ ≥M θ′ ⇔ θ≥̃Mθ′ . Then the strategy α(·, t) is decreasing with respect to ≥̃M and all types
choosing t have the property θ ∈ A, θ′ ∈ R ⇒ θ≥̃Mθ′. If α(·, t) is not constant, the DM would
be strictly better off using a strategy α′(x, t) = α∗ ∈ [0, 1] for some constant α∗, see e.g., Lemma
3.3 in Chi (2014) or the proof of Lemma 3 in Quah and Strulovici (2009). Let α0(x, t) = 0 and
α1(x, t) = 1 for all x ∈ X . The strategy α′(·, t) is a convex combination of α1(·, t) and α0(·, t),
two cutoff strategies. By the linearity of the preferences in α, these would be a profitable situation.
Therefore, it must be that either α(·, t) = 0 or = 1. In that case, either all types choose t or none
of them.
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