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Abstract

A decision-maker can test a privately informed agent prior to making a decision. In-
stead of choosing the test himself, the decision-maker requires the agent to choose the
test from a menu. By offering a menu, the decision-maker can use the agent’s choice
as an additional source of information. The decision-maker must accept or reject the
agent who always wants to be accepted. I show that the decision-maker does not ben-
efit from commitment in this context. Using this result, I show in several economic
environments when the decision-maker benefits from offering a choice of tests. When
the set of feasible tests contains a most informative test, I provide a necessary and suf-
ficient condition for the introduction of a less informative test in the optimal menu. I
also show when the decision-maker benefits from a menu when tests vary in difficulty
or types are multi-dimensional.
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1 Introduction

In many economic settings, decision-makers (DMs) rely on tests to guide their actions.

Universities use admission tests as part of their application process, firms interview job
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candidates before they hire them and regulators test products prior to authorisation. In
these examples, the DM is deciding whether to accept an agent and his preferences depend
on some private information held by the agent: the ability of the student, the productivity
of the candidate or the quality of the product. Ideally, the DM would want to use a fully
revealing test, but this is often not feasible and thus the ability to learn from the test outcome
alone is limited. However, there is an additional channel the DM can learn from: he can
offer a menu of tests and let the agent choose which test to take. The DM can then use the
agent’s choice as an additional source of information.

Depending on the setting, constraints on the testing ability can take many different
forms. For instance, a hiring firm is constrained by the amount of time and resources it can
allocate to the selection process; most universities have to use externally provided tests for
their admission procedures; and medicine regulatory agencies face both technological and
ethical constraints when authorising new drugs.

In this paper, I study the DM’s optimal design of a menu of tests and provide conditions
under which the DM learns from both the test choice and the outcome. I first provide a
characterisation of the optimal menu as a max-min problem and show that the DM does
not benefit from committing to an acceptance rule for any arbitrary domains of feasible
tests. I then apply this result to natural economic environments and provide conditions
under which the DM benefits from offering more than one test and conditions under which
he does not. I consider the following three alternative structures on the feasible tests: (i)
the DM has access to a test more informative than all the others, (ii) tests are ordered by
their difficulty, and (iii) each test can identify only one dimension of the agent’s private
information.

More specifically, I study a DM who has to accept or reject a privately informed agent.
While the DM wants to accept a subset of types (the A-types) and reject the others (the
R-types), the agent always wants to be accepted. The domain of feasible tests is an exoge-
nously given set of Blackwell experiments. The DM designs a menu of tests, a subset of the
feasible tests, from which the agent chooses one. For example, in its admission procedure,
a university can let a student decide whether he takes a test or how many reference letters
he submits. A regulator can let a pharmaceutical company design the clinical trials when
seeking authorisation of a new drug. After observing the choice of test and its result, the
DM decides whether or not to accept the agent.

In Theorem 1, I show that regardless of whether the DM is able to commit ex ante to

an acceptance rule, the optimal menu and strategies remain the same. Moreover, I provide



an optimisation problem based on the model with commitment that delivers equilibrium
strategies. This result holds for arbitrary type structures and domains of feasible tests. The-
orem 1 follows from a max-min representation of the DM’s problem where the maximiser
chooses the DM and A-types’ strategy and the minimiser chooses the R-types’ strategy.

In Section 4, I use Theorem 1 to determine which tests are part of the optimal menu in
three natural economic environments. In Section 4.1, I consider a domain of feasible tests
containing a dominant one, in the sense of Blackwell’s (1953) informativeness order. One
example of this environment is a university or a firm considering whether to allow candi-
dates to submit optional material like an interview, a standardised test or recommendation
letter when applying.!

The first result in that environment is that the dominant test is always part of an optimal
menu. In the example above, it means that the university should always allow students to
take the admission test or submit the optional reference letter. I then examine the case of
binary tests. By interpreting one of the two signals as a high signal, a binary test allows for
ranking types by their performance on a test. I introduce a property of tests called A-types
unreliability that is necessary and sufficient to determine whether a dominated test should
be included in the optimal menu. Intuitively, a test is A-types unreliable if enough A-types
perform well on the test and sufficiently many do not perform well on the test. Conversely,
a test is not A-types unreliable if, for example, all A-types have a higher performance than
all R-types but also if all A-types have an intermediate performance on the test. In these
cases, | say that the test is single-peaked.

In Proposition 1, I show that if the dominant test is A-types unreliable then it is always
optimal to include a dominated test in the optimal menu. In fact, I show that whenever a
test is A-types unreliable, it is always optimal to include another test in the menu, whatever
that other test might be. On the other hand, if the dominant test is not A-types unreliable,
then offering only the dominant test is optimal. Proposition 1 helps rationalise the common
practice of making parts of an application process optional: if there is a concern that some
good candidates would not perform well on the optional parts, offering a choice could in
fact be optimal. By offering a choice, the university allows these good candidates to not
submit a test where they perform poorly and are punished for this bad performance. This

intuition resonates with the advice given to prospective candidates to not submit optional

'Some prominent examples of these practices: the University of Chicago allows candidates to submit an
optional letter of recommendation and a video profile (University of Chicago, 2024a) or Stanford University
offers an optional interview in its application process (Stanford University, 2024).



material if it ‘may not highlight a strength [...] or be a great opportunity [...] to share
more’ from the University of Chicago (2024b) or to favour ‘quality over quantity’ when
choosing whether to submit an optional recommendation letter (from NYU admission offi-
cer Saviano, 2020).

In the case where the tests generate more than two signals, the results extend as follows.
If there exists a subset of signals where one R-type is performing better than some A-type
but worse than others, there exists a less informative test that is part of the optimal menu for
some prior distribution on types. On the other hand, if the environment is one-dimensional,
in the sense that all the tests satisfy the monotone likelihood ratio property and the DM
wants to accept any type above a threshold, only the most informative test is offered.

A key observation to show that a singleton menu is optimal is that tests ranked by infor-
mativeness induce single-crossing preferences over tests for the agent. When the dominant
test is single-peaked, the single-crossing property implies that the equilibrium payoffs are
unique and correspond to the equilibrium where only the dominant test is chosen. These
results extend unravelling-type arguments (e.g., Milgrom, 1981, 2008): instead of unrav-
elling to the most revealing evidence, the strategies unravel to the dominant, but possibly
noisy, test. The equilibrium forces concentrate choices on the most informative test but
potentially reveal less information than if types would choose different tests.

Tests ranked by informativeness are in a sense vertically differentiated. In Section 4.2
and Section 4.3, I introduce two environments with horizontally differentiated tests and get
different results. In Section 4.2, I consider an environment where types are ordered on the
real line and feasible tests are ordered by their difficulty. For example, a regulator pro-
tecting consumer welfare could mandate labelling to inform consumers about a product’s
characteristics and decide which certifiers, varying by their stringency, a firm can use.? To
this end, I define and characterise a new notion of difficulty to compare experiments. This
notion captures that varying the difficulty of a test changes which types are better identified:
a more difficult test is informative when it is passed, because only high types are likely to
produce a high grade, but it is less informative when it is failed. I show that offering only
one test is optimal. Similarly to the proof of Proposition 1, I show conditions under which
tests ordered by difficulty imply single-crossing preferences over test. I use this property
to prove that the only equilibria without unravelling are ones where the DM is better off

offering only one test.

2For example, the EU mandates energy labels on products such as washing machines, light bulbs or tyres.
Varying the difficulty could correspond to varying the threshold to get a ‘high grade’.



One lesson from Section 4.1 and Section 4.2 is that ordered types can lead to a singleton
menu. [ then turn to a multidimensional setting. For example, a hiring firm could be
guided by two considerations, the candidate’s technical and managerial skills, and focus
the interview on either dimension. More generally, I assume that the agent’s type has two
components and each test is informative about only one of them. Offering tests for both
dimensions allows A-types that perform badly in one dimension to select the test where
they perform best. I show that the optimal menu contains both tests for any prior if and
only if the DM wants to accept any type that performs well in at least one dimension. This
would be the case if the hiring firm would want to hire a candidate with high technical
skills but no managerial skills and vice-versa. On the other hand, if the firm cares about
both dimensions simultaneously, then, for some priors, it uses only one test.

Finally, I consider the following extension to the baseline model. I extend the strategy
space of the agent by allowing non-verifiable communication and costless unobserved ef-
fort. I first extend the max-min characterisation to that environment. Using that result, I
explore in a setting similar to Section 4.1 with a Blackwell dominant test, whether commu-
nication helps the DM and how communication interacts with unobserved effort. I show
that whenever the agent can exert effort, communication alone cannot improve the DM’s
payoffs, but offering a dominated test can. On the other hand, when the agent cannot influ-
ence the outcome of the test, communication can strictly improve the DM’s payoffs. The
appendix B also considers an extension introducing the possibility of random allocation to

tests.

Relation to the literature

In this paper I study a model of information provision by a privately informed agent through
the choice of a test. Formally, my model is closest to the mechanism design with evidence
literature where an agent can bring verifiable information to influence the allocation in a
mechanism (Green and Laffont, 1986; Bull and Watson, 2007; Deneckere and Severinov,
2008). In particular, Glazer and Rubinstein (2006) study a similar model where the agent
can present only deterministic evidence about his type. In Section 3, I characterise the
optimal mechanism and unlike most of that literature, I allow for arbitrary domains of

feasible tests that include nondeterministic tests.? Introducing stochastic tests allows me to

3Evidence is a particular kind of test that takes a deterministic form: the agent can provide evidence that
he belongs to a certain subset of types. Another difference with modelling information with evidence is that
not all types can participate in all tests, i.e., they cannot provide evidence they do not have. I discuss the



study how the statistical properties of the tests interact with the strategic choices of players
in previously unexplored economic environments, for example environments containing a
most informative test and tests ordered by their difficulty. It also leads me to identify new
conditions on tests, such as A-types unreliability, to determine the optimal menu. These
results rationalise when DMs would offer a choice of test, as in the case of optional items
in university admission procedures, and when they would not.

A common theme in this literature is that the DM might not need commitment to the
allocation rule when designing the optimal mechanism; see, e.g., Glazer and Rubinstein
(2004); Glazer and Rubinstein (2006); Ben-Porath et al. (2019); Ben-Porath et al. (2021).
In Theorem 1, in addition to showing that commitment has no value, I also show that
equilibrium strategies are the outcome of a max-min problem.* This formulation is useful
to further characterise the strategies used at the optimum.

Another important focus of the literature on strategic disclosure is finding conditions
under which all information is revealed in equilibrium; see, e.g., Grossman (1981), Mil-
grom (1981) and for more recent contributions, Hagenbach et al. (2014) or Carroll and
Egorov (2019). In my model, if full information is possible, it is optimal, but I also char-
acterise the optimal choice of test when full information is not attainable. Relatedly, in
Section 4.1, I give conditions under which equilibrium payoffs are equal to the ones from
only using the maximally informative test. I therefore provide unravelling-type results in a
noisy test setting.

The framework of this paper also encompasses models of communication with verifi-
cation (e.g., Glazer and Rubinstein, 2004; Carroll and Egorov, 2019). In particular, Silva
(2024) studies an environment with similar payoffs where the agent can communicate to a
DM that has access to a fixed test. He gives conditions under which there is value of com-
munication or not (see also Weksler and Zik, 2022, for a related model and results). In this
paper, the DM has access to a richer testing technology and can let the agent choose which
test to take. This allows me to make additional results and also extend the conditions of

Silva (2024) to determine when communication can help the DM. The connection to these

relation between these two modelling approaches in more detail in Section 2.2. For examples of mechanism
design papers with nondeterministic tests, see Ball and Kattwinkel (2022) and Ben-Porath et al. (2021).

“This result depends on the payoff function assumed. Ben-Porath et al. (2019) consider payoff functions
that are more general than the ones considered here but restrict attention to normal evidence structures (Bull
and Watson, 2007; Lipman and Seppi, 1995). Ben-Porath et al.’s (2021) result on the value of commitment
implies this one but they do not provide a characterisation of the equilibrium strategies. See also Sher (2011)
and Hart et al. (2017) for results on commitment in mechanism design with evidence using different payoff
functions.



models is explicitly modelled and discussed in Section 5.

The other branch of literature my paper relates to is information design without sender
commitment. In these papers, the agent and the DM correspond to the sender and the
receiver, respectively. In particular, this paper is closer to models characterising receiver-
optimal tests where the sender can choose which test to take. In Rosar (2017) and Harbaugh
and Rasmusen (2018), the receiver designs a test where a privately informed agent can
either take the test, possibly at a cost, or take an uninformative test. In these papers, the
receiver flexibly designs a test given that the sender has a choice. In my paper, the receiver
designs the choice, i.e., the menu, given the restrictions on the feasible tests.

Other papers consider the receiver-optimal design of tests where the sender’s action is
partially observed or unobserved, e.g., DeMarzo et al. (2019), Deb and Stewart (2018),
Perez-Richet and Skreta (2022) or Ball (2021) (note that Perez-Richet and Skreta, 2022,
also consider observable actions). In a model of dynamic task allocation, Deb and Stewart
(2018) share a similar concern about whether the optimal task should be the most infor-
mative. The key strategic friction in their model is that the agent can shirk on the task. In
my paper, the design of the optimal menu also has to take into account the strategy of the
sender; however, unobservable actions fundamentally change the sender’s incentives and
thus how information is revealed. I provide a framework and additional results in Section 5
where this possibility is allowed.’

Finally, there are numerous papers concerned with the design of tests and selection
procedures whose themes overlap with this paper’s. In a complementary paper, Dessein
et al. (2023) show that when the agent can observe the test results before submitting them,
test-optional policies cannot be justified from an informational point of view. In contrast, in
this paper, the agent does not know the outcome when choosing the test. Whether the test
result is observable depends on the economic application considered. This is the case when
test scores are automatically sent to universities,® they use interviews, or the content of a
reference letter is not revealed to the student. On the other hand, some popular standardised
tests like the SAT or ACT do not automatically send test scores to universities. Di Tillio

et al. (2021) compare the informativeness of selected data to randomly generated data.

SThere are also papers studying sender-optimal tests when the sender cannot fully commit to reporting
the test correctly, e.g., Nguyen and Tan (2021), Lipnowski et al. (2022) or Koessler and Skreta (2022). In
Boleslavsky and Kim (2018) and Perez-Richet et al. (2020), the sender can commit but there is a third agent
whose effort determines, respectively, the state of the world or the Blackwell experiment actually performed.

®Some examples are the Law National Aptitude, Mathematics Admissions test or the Sixth Term Exam-
ination Paper Mathematics tests used for undergraduate admissions in the UK or the Dental Admission Test
and Optometry Admission Test in the US.



Specifically, they study under which condition a DM would prefer observing the n highest
realisations of a data generating process over n random draws. They apply their results
to questions similar to this paper like ‘Should a candidate in an admission process select
which questions they want to answer or should the examiner select the questions?” As in
Dessein et al. (2023), a key modelling difference is that the agent knows the realisation of
the test outcome when selecting what to report. Krishna et al. (2022) model the university
selection process as a contest and show that coarsening grades can be Pareto efficient.
Ely et al. (2021) study the optimal allocation of tests from a restricted set to agents with

observable characteristics.

2 Model

There is a DM and an agent. The agent has a type 6 € ©, |©] < oo, with a common prior
1 € AO. The prior is always full support unless specified otherwise. The set of types is
partitioned in two: © = AU R, AN R = (). The type is private information of the agent.
The DM must take an action a € {0, 1}, that is, accept or reject. The utilities of the DM
and the agent are v(a, 0) = (1[0 € A] — 1[0 € R]) and u(a, ) = a, respectively. That is,
the DM wants to accept agents in A and reject agents in R. The agent always wants to be
accepted. The analysis is virtually unchanged by allowing for DMs with utility functions
of the form v(a, #) = av(f) for some v : © — R.” When the action space is binary and all
agents prefer a = 1 to a = 0, assuming that v(a, ) = ar(0) is without loss of generality
(see Ben-Porath et al., 2021, for a discussion).

There is a finite exogenous set of tests 77 C II := {m : © — AX}, where X is some
finite signal space. The conditional probabilities of test ¢ are m;(-|@). The set T captures
the restriction on the DM’s testing capacity. He can perform only one test from that set. A
menu of tests is a subset of the feasible tests, M C T..

For each menu M, the timing of the game is as follows.

1. The agent learns his type 6.

2. The agent chooses a test from the menu, the agent’s strategy is denoted by o : © —
AM.

"To see this, observe that there is implicitly a weight on accepting the type which is the prior p. If there
is an additional weight v, we can always transform the prior to take into account these extra considerations:
() = % and conduct the analysis using the prior fi. This has been pointed out by other papers
using this kind of preferences, e.g., Glazer and Rubinstein (2004) or Deb and Stewart (2018).




3. A signal x is drawn according to the realised test m;(+|6).

4. The DM chooses an action based on the realised test choice and outcome; the accep-
tance probability is denoted by o : M x X — [0, 1].

The solution concept is weak Perfect Bayesian Equilibrium of the game induced by the
menu M. There are generally many equilibria and I focus on the DM-preferred equilib-
rium.® For example, for any menu where two tests are offered, there are always equilibria
where all types choose the same test, akin to a babbling equilibrium in a cheap-talk model.
This selection is also motivated by the nature of the results in this paper. I focus on possi-
bility and impossibility results: when it is optimal to offer more than one test and when it
is not. Looking at the DM-preferred equilibrium allows me to establish when it is possible
to benefit from offering more than one test and when it is impossible.

Notation: For any «, denote the probability of type € to be accepted in test ¢ by
p(a;8) = > ot z)m(x]0). Talso write (o, 0) € wPBE(M) if there is a belief /i such
that («, o, i) is a weak PBE in the subgame when the menu is M.

The optimal design of menu solves

V = A[jgllg)T( IE%XZIU Z (t10)pe(cr; 0) — ZM Z (t[0)pe(c; 0)

teM 9€R teM
s.t. (o, 0) € wPBE(M)

The inner maximisation problem selects, for a fixed menu, the DM and agent strategy
to maximise the DM’s payoff, under the constraint that they are equilibrium strategies.
The outer maximisation problem selects the best possible menu for the DM. I say that the
DM’s payoffs are higher in menu M than in M’ if the DM’s payoff in the DM-preferred
equilibrium in M is higher than in M.

2.1 Example: Opting out of an admission test

Suppose a university uses some test for admission and that there are three types of students:
A = {Al, A2} and R = {R1}. Consider the set of feasible tests 7" = {¢, ()} where () is an

8The results would be exactly the same if I would take DM-preferred Sequential Equilibrium (Kreps and
Wilson, 1982) as my solution concept. I comment on this in more detail in the discussion of Theorem 1.



uninformative test. The test ¢ is described by X = {x, 1} and

1/2 ifx=uxg 1/3 ifx=ux
(x| Al) = m(x|R1) =
1/2 ifz=ux 2/3 ifr=m

0 ifzx=ux
7Tt(.T|A2) =

1 ifz=x

For the purpose of this example, suppose that (A1) < 2u(R1) < u(A2). The lessons
from this example can be extended to arbitrary priors.

This example can be interpreted as follows. The test ¢ is a test a university uses to
get information about students, like an interview, a reference letter or a standardised test.
The signal z; represents a high grade and z, a low grade. A common concern about these
standardised tests or interviews is that they can be too easily gamed by unobserved test
preparation or fail to identify good students in some categories of the population (see, e.g.,
Academic Senate UC, 2020, for a report on standardised tests in the University of Cali-
fornia system). Similarly, there is a concern that unequal access to good reference letter
writers makes it possible that good students get bad recommendation letters (Todd, 2021;
Hiribarren, 2020). The parametrisation of the test ¢ captures these phenomena. While A,
and R, are naturally ordered, in the sense that A, is more likely to have a good grade
than R, A; corresponds to a type of student that the university wants to accept but gener-
ates a lower grade than R;. The prior could be obtained based on some other information
provided by the student, e.g., after having observed transcripts or socioeconomic back-
ground. This parametrisation, however, still captures that a high grade is predictive of a
high-quality student, in line with the finding from the education literature that standard-
ised tests are predictive of good educational outcomes even after conditioning on various
observables such as socioeconomic background or race. Adding () to the menu allows the
student to opt out from the admission test. Another interpretation of this example is that the
test is a recommendation letter and adding () makes that recommendation letter optional.
The parametrisation then captures the possibility that Al is a good student but with no
connection to professors or teachers that could write a good letter for them.

When only t is offered: The information structure and prior deliver the following best
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response when only ¢ is offered,

0 ifzx=ux
a(z,t) =
1 ifz=uo

The acceptance probabilities of each type are then
pe(a; R1) =2/3 pe(a; A1) = 1/2 pe(a; A2) =1

When both t and () are offered: Consider the equilibrium with the following strategies of
the agent:

o(D|R1) = M(— o(D|Al) =1 o(t|A2) =1

The student R1 mixes between the two tests, ¢ and (), whereas A1l chooses () with
probability one and A2 chooses ¢ with probability one. If all types play a pure strategy, it
is not possible to maintain an equilibrium where both tests are chosen. If that is the case,
there is a test that is chosen only by an A-type and in equilibrium the DM must accept
with probability one after any signal in that test. Thus R; mixes in equilibrium to make the
menu {¢,} credible.

Given the agent’s strategy, the DM’s strategy after ¢ remains the same as before. When
the DM observes (), he is indifferent between accepting and rejecting. By accepting with
probability 2/3, R1 is indifferent between () and ¢. The resulting acceptance probabilities

Elp(a; R1)] = 2/3 po(o; A1) = 2/3 pi(a; A2) =1

Types R1 and A2 have the same acceptance probabilities as before but Al is accepted
with strictly higher probability. Therefore, allowing to opt out strictly increases the DM’s
payoffs. Intuitively, type Al is a student that is poorly identified by the admission test.
Giving the option of opting out allows that student to differentiate himself from the other

types without benefiting the bad student R1.
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2.2 Discussion

Test restriction: The exogenous set of tests 7" can capture different constraints on the DM’s
testing capacity. It could be a purely technological constraint; e.g., when choosing amongst
standardised tests, universities can choose only from an exogenously given set of tests from
test providers. The constraint can also be on some properties of the tests that can be used;
e.g., T' C {m : 7 has the MLRP}. Finally, it could come from a capacity constraint in the
information processing/acquisition abilities of the DM: e.g., a limited number of sample
sizes a researcher can collect, a maximum number of reference letters a university can
process or there could be a cost function associated with each experiment C' : [T — R and
a maximum cost the DM canpay c € R, T C {7 : ¢ > C(m)}.

Non-verifiable communication: In the first sections of the paper, I do not explicitly
model non-verifiable communication. In many applications, communication can be veri-
fied or the agent can be liable for lies: for example, when the agent is a regulated firm or a
candidate for employment. In these cases, no information transmission can be pure cheap-
talk. It is also motivated by a transparency or accountability constraint on the DM: using
cheap talk means that two observationally equivalent candidates, i.e., choosing the same
test and having the same outcome, are treated differently. Treating observationally equiva-
lent candidates similarly is in line with requirements that selection procedures or regulatory
decisions should be based on objective criteria.’ I discuss how to integrate non-verifiable
communication and its robustness in Section 5.

Effort: The outcome of the test is independent of the agent’s action. The model would
go unchanged if effort were costless and observable because it could be deterred with off-
path beliefs. I explore the possibility for costless and unobservable effort in Section 5.
Note also that if signals are ordered and the DM uses a cutoff strategy, as in many natural
applications, a reasonable assumption on effort would be that the higher the effort, the
likelier a high signal. In this case, the agent would always have an incentive to provide
high effort. See Deb and Stewart (2018) and Ball and Kattwinkel (2022) for models that
take into account both asymmetric information and moral hazard in a model of testing.

Relation to models with evidence: The model can be interpreted as a generalisation

of models with evidence. The idea of these models is that each type is endowed with a

For example, CIPD, the UK’s professional body for HR and people development, recommends the use
of objective criteria when making hiring decisions (CIPD, 2022). In the EU, regulatory authorities should re-
spect the principle of equal treatment that ‘requires that comparable situations must not be treated differently
[...] unless such treatment is objectively justified’ (Sia and Gohari, 2024).
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set of messages that only a subset of types can send. Formally, an evidence structure is a
correspondence £ : © = M for some finite set of messages M. Thus, type € can send
messages only in F(6). We can capture these models in the following way. The set of
feasible tests has X = {z1,z0} and for all m € M, m,(1|0) = 1 & 6 € E~Y(m).
Thus a test m perfectly reveals whether 0 is in £~ (m) orin © \ £~ (m). In a model with
evidence, a type 6 can never reveal he is in © \ E~!(m) for a message m ¢ F(6). However,
in the testing model, we can always incentivise any type to not choose such a test by setting
a(xg,m) = 0 for all m. This strategy could be justified because (x¢,m) would always be
off-path. On the other hand, I do not allow the agent to withhold evidence after seeing its
realisation as in Dye (1985).

3 Characterisation of the optimal menu

An important step in the characterisation of the optimal menu is to show that we can use the
case where the DM can commit to a strategy to characterise the DM-preferred equilibrium.
I also show that in the DM-preferred equilibrium, the A-types play a pure strategy.
Abusing notation, I will abstract momentarily from the choice of menu and leto : © —
AT, i.e., the agent’s strategy is a choice over all feasible tests and o : X x T — [0, 1] the
strategy of the DM at any given test. Denote by 0© = (a(-|€)) peo fOr any ©' C O the
vector of strategies for a subset of types. Using this notation, o is the vector collecting the
strategies of A-types and o the vector of the strategies of R-types. I also use the following

notation for the DM’s payoffs:

v(a, o, o Zu Z (t10)pe(cr; 0) — Zu Z (t10)p(c; 0").

0cA teT 0’eR teT

I call the game with commitment the game where the DM can commit to a decision
rule a before observing the choice of test and the outcome. I say that the DM does not
benefit from commitment if the payoffs from the DM-preferred equilibrium are the same
in the game with commitment and in the original game.

I first observe in the following lemma that the DM’s value from the game with commit-

ment is obtained from a max-min problem.

Lemma 1. The DM’s payoff in the DM-preferred equilibrium in the game with commitment

13



is

max min v(a, o, o%). (1)
a,cd o

All proofs are relegated to appendix A.

To understand Lemma 1 better, first note that we can rewrite (1) as

max [max > u(0) Y o(tlf)pi(e; 0) —max > u(®') Y o(t0)pi(0s6)].

0cA teT 0’cR teT

That is, it corresponds to the problem of finding the best strategy o when the agent chooses
a test to maximise his payoffs given . Because the interests of the A-types are fully
aligned with the DM’s, they try to maximise his payoffs whereas the R-types have opposite
interests and thus try to minimise the DM’s payoffs. Unlike the original DM problem, the
DM can commit to « and thus it does not need to be a best reply.

We can use this characterisation to get the following result for the game without com-

mitment.

Theorem 1. For any (o, o) € arg maxg ;4 mingr v(&, 6, 6%), an optimal menu is

M = Uge 4 supp ‘7('|9)'

Additionally, for any o' € arg mingz maxs v(a, 0?,6%), (o, 04, o®) are the strategies in
the corresponding DM-preferred equilibrium.

Moreover,

* The DM does not benefit from commitment.

o There exists a DM-preferred equilibrium where o

M] < |Al

is in pure strategies and therefore

Theorem 1 provides two important tools to characterise the optimal menu. The first one
is to show that there is no value of commitment and to provide a maximisation problem
that gives exactly which strategies are used in the equilibrium without commitment. This
is a powerful tool to test equilibria and to establish whether a test should be part of an
optimal menu. Theorem 1 also allows to establish that a test is part of an optimal menu
in equilibrium, even when it is not strictly optimal to add this test. This observation will
be important in the next section, where I will show that some tests are part of the optimal

menu and then rely on their properties to characterise equilibria.
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That commitment has no value in this game comes from the max-min structure of the
characterisation. The result relies on the fact that for any strategy of the A-types, the DM
and the R-types play a zero-sum game. Therefore, if this game has an equilibrium, ‘max-
min=min-max’ and the order of moves does not matter in this game: the DM has the same
payoffs if he moves first or last.

This observation also implies that the max-min characterisation can be used to extend
the result beyond a set up with finite action and payoffs linear in (mixed) strategies. It is
for example straightforward to extend the result to a setting where the DM is constrained to
use increasing strategies, i.e., X C Rand x > 2’ = a(x,t) > «(z’,t). This set is compact
and convex in R¥! x RI"! and therefore the minimax theorem applies. '

I also note that the possibility of committing to a menu is not important for the result.
Indeed, if more tests are offered, the agents can be discouraged from taking them with the
right off-path beliefs. This is possible as long as we focus on a DM-preferred equilibrium.

The second tool is to establish that the size of the menu is bounded by the number of
A-types. This observation limits the number of tests we need to consider. An immediate
corollary is also that if there is only one type the DM would like to accept, an optimal menu
is to use only one test. In particular, this result shows that in a binary-state environment,

the optimal mechanism uses only one test, no matter what the available set of tests is.

Corollary 1. Suppose |A| = 1. Then for any T, there is an optimal menu that uses only

one test.

Ben-Porath et al. (2021) also show that there is no value of commitment in a setup

where preferences take a similar form as here.!!

One advantage of Theorem 1 is that it
provides a maximisation problem that delivers equilibrium strategies. Knowing that there
is no value of commitment to o would, for example, not be enough to establish that it is
without loss to consider pure strategies from A-types!? or to establish that a test is part of an
optimal menu in equilibrium when it is not strictly optimal to add it. Second, as mentioned,
the max-min characterisation can be used to extend the result beyond a set up with finite

action and payoffs linear in strategies.

10As a further proof of concept, in appendix C, I show that the result also extends to a case where the DM
is constrained to play a cutoff strategy, i.e., X C R and a(2’,t) > 0 = «(x,t) = 1 for x > z’. The set
of cutoff strategies is not convex and I use the existence result of Milgrom and Shannon (1994) relying on
monotonicity of best-reply correspondences to show equilibrium existence.

"'"The functional form they identify, semi-aligned preferences, is more general than what I assume here.
The proof of Theorem 1 extends to semi-aligned preferences.

12This observation can simplify the analysis a lot as the environment gets more complex, e.g., in Section 5
when there is a choice of effort and communication on top the choice of test.
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Sequential Equilibrium. The equilibrium derived in Theorem 1 is sustained with off-
path beliefs that put probability one on some € R. If the solution concept is DM-preferred
Sequential Equilibrium (SE) (Kreps and Wilson, 1982), Theorem 1 would also hold. If all
tests have full support, then all signals are on-path and weak PBE and SE coincide. If some
tests do not have full support, I can always assume that the trembling of R-types is more
likely than the trembling of A-types. Then, the DM’s off-path beliefs after the pair (¢, ) are
that the type is an A-type if the support of A and R-types do not coincide and that the type
is an R-type otherwise. This observation guarantees that if an A-type finds it profitable to
deviate in the problem without commitment, then he would also find it profitable to deviate

in the problem with commitment.

4 Economic environments

4.1 Environments with a Blackwell dominant test

It is common in applications that the DM has access to a most informative test because,
for example, the choice is simply between a test and opting out of it. This is the case if
universities make some parts of their admission procedures optional: for example, optional
interviews, reference letters, tests, etc. Having a most informative test can also come from
the structure of the constraints. For example, the DM could have a time budget to conduct
an interview. The more time the interview takes, the more informative it is. Another
possibility is that the DM can easily make a test less informative by simply not conducting
part of the test; e.g., if a test is composed of a series of questions, the DM can ignore some
of them.

I will use Blackwell’s (1953) notion of informativeness.

Definition 1 (Blackwell (1953)). A test t is more informative than t', t = t', if there is
function B : X x X — [0,1] such that for all ' € X, Y f(z,2")m(x]0) = mp(2']0) for
all € O and forallz € X, ), f(x,2") = 1.

I call a test ¢ a dominant test if ¢ > ¢ for all ¢ € T. If a test is more informative
than another, then in any decision problem, i.e., i.e., a set of actions, a prior over states
and a utility function over state and actions, using the more informative test yields a higher
expected utility (Blackwell, 1953). A first important fact we will record here is that if there

is a most informative test, then it is part of an optimal menu.
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Lemma 2. Ifthere ist € T such thatt > t' for allt' € T, then there is an optimal menu
that includes t.

This lemma follows from the max-min characterisation of Theorem 1 and the properties
of dominant tests. Indeed, if we find a menu where the dominant test ¢ is not included, we
can modify the DM’s strategy such that one A-type is accepted with higher probability than
the test he is choosing, say t’, and all R-types are accepted with a lower probability than
in t’. This new strategy is either a deviation or a new maximum in the max-min problem.
Note that if we knew only that commitment had no value, we would not be guaranteed that
t would be part of an optimal menu.

As we have seen in the admission test example in Section 2.1, it can be optimal to
add a strictly less informative test in the optimal menu. I show now when the example of
Section 2.1 generalises or does not. That is, I provide conditions under which it is optimal
to include a dominated test and conditions under which it isn’t.

I focus on a binary signals environment, X = {xo,z;}. I will use two properties of
binary signals tests. First, when signals are binary, we can define a complete order over
types for each test. In this order, types are ranked by their likelihood of generating signal

12 0 > 0 < m(x1|0) > m(xq]0"). Given that tests are binary, this is equivalent to
m(x1]0)
m(w0l0) "
The second property I use is that when signals are binary, the DM’s strategy is automat-

ordering types by the likelihood ratio,

ically monotonic in the signals, i.e., either a(xy,t) > a(zo,t) or a(xy,t) < azg,t). In
appendix C, I show how the results of this section extend to environments where these two
properties are satisfied, i.e., types can be ranked by their likelihood ratios and strategies are
increasing.!?

The following property will be key to establish when using a dominated test is optimal.

Definition 2 (A-types unreliable test). Let X = {xg,x1}. The test t is A-types unreliable

if the following three conditions are satisfied

o A-type heterogeneity: there is 6,0, € A and 03 € R such that

01 <; 05 <; 0o, (U-1)

13Recall that as argued in the discussion of Theorem 1, the max-min characterisation of the DM-preferred
equilibrium also holds when strategies are constrained to be increasing.
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» Imprecise at the bottom: there is 0 € © and 0 € A with 0 <; 0 such that

mledf) | Y w@) = Yo w@) | = Y u@m@lo)~ Y p@)m(xd),
0EA, 0<40 R, 0<0 9€A,0<0 9ER, 0<0

(U-2)

e Precise at the top: there is § € © and 0 € A with 6 >, 0 such that

> wlOm(xl)— D pO)m(0) > m(xl0) | D @)= > ()
0cA,0>.0 0CER,0>.0 0cA,0>:0 0ER,0>:0

(U-3)

To understand the property A-types unreliability, suppose that we interpret signal x| as
a high signal and the DM only accepts after a high signal. We can then interpret the order
>, as ranking types by their performance on the test.

Condition ‘A-types heterogeneity’ (U-1) first states that there is one A-type that is per-
forming worse than some R-type while some other A-type performs better. This condition
captures that the test might be adapted to some A-types in the sense that they perform well
on it while other A-types do poorly.

A-types unreliability also requires that the test is ‘Imprecise at the bottom” and ‘Precise
at the top’. These two conditions are quantitative properties determining the extend to
which the A-types perform poorly at the bottom of the performance distribution and well
at the top. To see this, observe that the RHS of condition ‘Imprecise at the bottom’ (U-2)
is the DM’s payoffs when accepting after signal z; from types below 6. The LHS is the
payoffs of the DM when types at the bottom are pooled together and all send signal z; with
probability 7 (x1]6). A test is ‘Imprecise at the bottom’ when the DM is better off having
types pooled rather than follow the signal.

Similarly, condition ‘Precise at the top” (U-3) states that for types high enough accord-
ing to >, the test is precise: the DM is better off using the test rather than having them
pooled and send signal x; with probability 7;(z,|6).

Before turning to the results, I note that two simpler prior-independent properties on
t can help determine whether the test is A-types unreliable. I call a test enclosed if there
is 01,05 € A such that §; <, 0 <; 0, for all # € O, then the test is A-types unreliable.
Intuitively, this holds when both the best and worse performer are A-types. An eclosed test

is always A-types unreliable.
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I call a test single-peaked if there is 01,60, € A suchthat A = {0 : 6; <; 0 <; 05}
A single-peaked test is never A-types unreliable. It occurs in a natural specification where
all A-types have a higher performance on the test than any R-type. But a test is also
single-peaked when A-types have an intermediate performance on the test or are the worst

performers.

Proposition 1. Let X = {x¢,x1}. Suppose there ist € T such thatt = t' forallt' € T
and that 0 #, 0’ for all 6,0 € ©.
If the test t is A-types unreliable, there is an optimal menu containing some t' < t.

If the test t is not A-types unreliable, the singleton menu {t} is optimal.

The proposition is not an ‘if and only if” statement because the optimal menu is not
always unique. So it can be that both a menu containing a dominated test and a menu
containing only the dominant test are optimal. This situation occurs, for example, when the
dominant test is not informative enough and the DM does not act differently after observing
different signals.

In terms of our admission test example, Proposition 1 delivers the following intuition:
if the university believes that sufficiently many good candidates will not perform well on
an admission test, it will be better off giving a choice of tests to the candidates. This choice
will allow these bad performers to avoid being punished by the test.

The key feature of A-types unreliability that delivers Proposition 1 is that different A-
types have different performances on the test, in the sense of condition (U-1) where some
A-types perform worse than R-types while others perform better. Importantly, it is not that
the test is not monotone with respect to types. The reason the test has to be flawed in that
way is that it needs to be possible to give at least two different A-types incentives to choose
a different test. Conditions ‘Imprecise at the bottom’ (U-2) and ‘Precise at the top’ (U-3)
are then quantitative conditions that ensure that separation will be optimal for the DM. In
fact, whenever condition (U-1), which is prior-free, is satisfied, there is always a prior such
that conditions (U-2) and (U-3) are satisfied as well.

A key observation to prove that when test ¢ is not A-types unreliable, the singleton menu
{t} is optimal, is that p;(c; @) — py(«; 0) is single-crossing in 6, with respect to the order
>, for any a. I then use two types of arguments. First, I show that whenever condition
(U-1) 1s not satisfied and some types choose test ¢, any equilibrium is payoff equivalent to
an equilibrium where only ¢ is chosen. The argument is purely game-theoretical.

When (U-2) is not satisfied, I show that for any equilibria where at least two tests are

chosen, there is a deviation in the max-min problem by eliminating the test chosen by the
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lowest types in the order >;. The single-crossing property allows for a clean characterisa-
tion of any candidate equilibrium and construction of a deviation in the max-min problem.
The violation of (U-3) is treated symmetrically.

The prior-free conditions to determine whether a test is A-types unreliable, enclosed

and single-peaked, deliver the following corollary.

Corollary 2. Let X = {xo, x1}. Suppose there ist € T such thatt = t' forallt’ € T and
that 0 #; ' for all 6,0" € ©.

The menu {t} is optimal for any . if and only if the test t is single-peaked.

The DM’s payolffs are higher in the menu {t,t'} than in {t} for any y and any t' € T if

and only if the test t is enclosed.

Finally, I note that we can use Proposition 1 to establish when it is optimal to include
another test ¢’ in the menu, even when ¢ and ¢’ are not Blackwell comparable. To show
Proposition 1, I show that whenever the dominant test is A-types unreliable, it is always
optimal to include a completely uninformative test. This shows in fact that there is always a
menu reaching higher payoffs (sometimes weakly) than the singleton menu {¢} for any set
of feasible tests. Indeed, because any test ¢’ is Blackwell more informative than the unin-
formative test, the DM can always benefit from adding ¢’ even if ¢ and ' are not Blackwell
comparable. Recall that I denote by II the set of Blackwell experiments with signal space
X:I={r:0 - AX}.

Corollary 3. Let X = {xq,x1}. If test t is A-types unreliable, then the DM’s payoffs are
higher in the menu {t,t'} than in {t} for any t' € 1L

The ideas of Proposition 1 can be partially extended to more than two signals without
imposing a priori restrictions on the DM strategy.'* First, if all tests satisfy the monotone
likelihood ratio property and the DM wants to accept only types above a threshold, the
optimal menu is the one that offers only the dominant test.

Proposition 2. Suppose ©,X C R, A = {0 : 0 > 0} for some 0 and all tests in T have
full support and the monotone likelihood ratio property: for 0 > 0',

0
M is increasing in x.

i (]0')

Ifthere ist = t' for allt' € T, then the menu {t} is optimal.

14 As mentioned, in online appendix D, I extend the result of Proposition 1 in a setting where the DM is
constrained to use an increasing strategy.
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Again, this result holds by showing a single-crossing difference property on the accep-
tance probability. Intuitively, the reason is that a more informative test sends relatively
higher signals for higher types. So if a low type chooses the most informative test, the
higher types must also choose that one. This constraint on strategies prevents any pooling
of A-types and R-types on two different tests. Combined with Lemma 2 that guarantees the
inclusion of the dominant test, we get our result. This result would hold using a weaker in-
formation order like Lehmann (1988) or some weakening of it. The key property delivering
the result is the single-crossing condition described above.

If it is possible to find two signals, x, 2/, two A-types A;, A; and one R-type, R; such

(x| A1) (x| R1) i (x| A2)
that e (2| A1) < (x| R1) < (x| A2)

a prior such that offering {¢, ¢’} is better for the DM than just offering {t}.

, then there is a test ¢’ strictly less informative than ¢ and

Proposition 3. Let t be a test. Suppose there are two signals x,x' € X, types A1, A; € A
and Ry € R such that
m(z|A1)  m(z|Ry) | m(x|As)

< < .
m(2'|A1)  m(2|Ry)  m(a'|Asg)

There is a prior pand a test t' < t such that the DM’s payolffs are higher in the menu {t,t'}
than in {t}.

Intuitively, if we interpret = as a high signal, the A-type A; sends relatively low signals.
Suppose that the prior is such that, if only ¢ is offered, x is accepted and z’ is not. In a sense,
it means that in the test ¢, type R; performs better than A; on the signals z, . It is then
beneficial for the DM to include a test that pools signals z, 2’ together. In that new test,
type A; can choose the coarsened test where the superior performance of type R; is less
important than in the original test. The conditions in Proposition 2 and Proposition 3 are the
same as in Silva (2024), who studies communication in a model with imperfect verification.

I discuss the connection with his results in Section 5.

4.2 Environments with tests ordered by difficulty

In many economic environments, the DM does not necessarily have access to a most in-
formative test but can vary the difficulty to pass a test. This is for example the case for
a regulator that can decide how demanding a certification test is. Like in Proposition 1, I
show that the optimal menu is a singleton. I first formalise the notion of difficulty of a test
as follows.
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Definition 3 (Difficulty environment). An environment is a Difficulty environment if © C
R A={0:0> 5} for some 0, X = {zg, 21}, T C R, all tests have full support, satisfy
the monotone likelihood ratio property and for all t > t', and 6 > 0/,

7 (2|0) 7y (x]6)
@10 = T (2]0)

, for x = x¢, 1.

If ¢ > t/, 1T will say that ¢ is harder than t’. Importantly, a harder test is not more
informative. To understand this fact better, let 1(-|x, ) be a posterior belief after observing
signal z in test ¢ and let = ppgp denote the first-order stochastic dominance order. The
monotone likelihood ratio property implies that pu(:|t, z1) =rosp u(:|t, o), that is, that
a higher signal is ‘good news’ about the type (Milgrom, 1981). The last property in the
definition further implies p(-|t, ) =rosp p(:|t', x), and this property is tight as formalised

below.

Proposition 4. Test t is harder than t' if and only if for v = xg,x1, pu(:|t,x) =rosp
w(-|t', x) for all prior u (including non full support).

The prior in Proposition 4 is allowed to be non full support because the proof of neces-
sity is for the case of a binary type, as in the proof of necessity in Proposition 1 in Milgrom
(1981). Intuitively, the characterisation shows that a passing grade shifts beliefs more to-
wards higher types in a harder test and a failing grade shifts beliefs more towards lower
types in an easy test. Or put differently, the harder a test is, the more informative it is about
the high types when there is a passing grade, whereas an easier test is informative about
the low types when the test is failed. This reasoning implies that if two tests are ordered
by difficulty, they are generally not ordered by informativeness.!> Figure 1 illustrates two
tests ordered by difficulty graphically. As an example, if © C (0, 1) and 7 (z1|0) = 0", we

are in a Difficulty environment.
Proposition 5. In a Difficulty environment, a singleton menu is optimal.

Proposition 5 offers another illustration of the difficulty of maintaining a profitable non-
singleton menu in equilibrium. Like in the case of failure of (U-1) in Proposition 1, I use
game-theoretical arguments to show that a singleton menu is optimal. Here, it is possible

to construct an equilibrium where more than one test is chosen in equilibrium. However,

SThere are knife-edge cases where two tests can be compared both in terms of difficulty and informative-
ness. This situation occurs when the posterior belief at one signal is the same across tests.
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E[0]zo, ¢/ E[0]o, ] El)] E[f]a,t] E[f]z1, 1]

Figure 1: Illustration of posterior means for two tests, ¢ > t'. The good news signal z;
shifts the posterior towards a higher posterior mean in the harder test. The bad news signal
x shifts the posterior towards lower posterior mean in the easier test.

the DM strategy needed to sustain that equilibrium is such that he is better off offering only
one test.

An important insight in the proof of Proposition 5 is to provide conditions under which
a single-crossing property on the choice of tests holds and use it to eliminate potential
equilibria. This mirrors the importance of the single-crossing condition in the proof of
Proposition 1. The lesson from these two results is that well-ordered types, coupled with
the single-crossing property, hurts the DM because it creates ‘too much’ separation, making
a separating equilibrium non-credible.

The proof proceeds in two steps. First, I show that there are at most two tests in an
equilibrium menu and if there are two tests, the harder test must be more lenient that the
easy test. Intuitively, no one would choose a hard test if on top of that the requirements
to be accepted would be harder to fulfil. In particular, I show that after the hard test, the
DM must accept with some probability after a failing grade and after the easy test, he must
reject with positive probability after a passing grade.

This requirement means that to maintain incentives to select both tests, the DM reacts
only to the least informative signal from the test: in the hard test after a failing grade, in the
easy test after a passing grade. I then show that in this situation the DM is better off using

only one test and reject after a failing grade and accept after a passing grade.

4.3 Bidimensional environments

In this subsection, I apply the tools of Theorem 1 to study environments with bidimensional
types. The analysis here can be easily extended to more than two dimensions. I assume
that the DM has access to tests that are informative about only one dimension and that the
preference of the DM is monotonic along each dimension. I use the following convention
to compare elements of R?: (6, 0,) > (0}, 0,) if 6; > 0! fori = 1,2.
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Definition 4. An environment is bidimensional if © = ©; x ©, C R% X C R and
T = {t1,t2} such that fori = 1,2,

o if0 € A thenforalld > 0,0 € A
* t; has full support and for all 0; > 0.,

7, (260, 6;) . ) . .
——— " 22 s strictly increasing in x for any 0; € O,
0, (16, 6;) g g i for any 65 € S,

o 7, (2]0;,05) = w4, (|03, 0%) for all 0;,0; € ©; and v € X

J

This class of test technology is related to Glazer and Rubinstein (2004) and Carroll and
Egorov (2019) who also study test allocation in multidimensional environments although
the results have a different focus.'® The first condition captures the idea that a higher type
is always better for the DM. The second and third conditions capture the idea that each test
is informative about only one dimension and that a higher signal corresponds to a higher
type in that dimension. I restrict attention to the case where only two tests, one for each
dimension, are available to the DM.

In this environment, whether the DM wants to offer a menu containing both tests de-
pends crucially on his preferences. In particular, I give a necessary and sufficient condition
on the preferences such that a full menu is optimal for any prior, i.e., a menu containing
both tests. Let ; = max O;.

Proposition 6. Suppose we are in a bidimensional environment. Offering a menu {t,t5}

is strictly optimal for any prior if and only if
fori=1,2,(0;,0;) € A, forall 0 € ©;. (2)

The proof of Proposition 6 works by showing that a deviation from a single test menu
is always profitable when condition (2) is satisfied and constructs a prior under which there
are no profitable deviations when the condition is not satisfied.

Figure 2 illustrates the condition of Proposition 6 with © C [0, 1]%. In Figure 2a, the
DM wants the agent’s type to be high enough in at least one dimension. Then the DM

16Both papers allow for possibly random mechanisms but restrict attention to full revelation of the di-
mension tested. Glazer and Rubinstein (2004) introduced this environment and characterised the optimal
mechanism. Carroll and Egorov (2019) study when the DM can achieve full learning in a setup with more
general payoffs. Their condition for full learning is not related to the condition for optimality of having both
tests in the menu in Proposition 6.
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(a) Full menu always optimal. (b) Full menu not always optimal.

Figure 2: Illustration of DM’s preferences for Proposition 6.

always prefers to offer a full menu to the agent. On the other hand, in Figure 2b, the DM
does not want to accept a type that is high in only one dimension. In this case, for some
prior, the DM wants to offer only one test. This happens when after any deviation from
the singleton menu any A-type is mimicked by too many R-types that cannot be distin-
guished from him. Finally, note that condition (2) is not related to the complementarity or
substitutability of the two dimensions. The key condition is that the highest types in both

dimensions are A-types.

5 Extensions and discussions

In this section, I extend the strategy space of the agent by allowing for nonverifiable com-
munication and unobservable costless effort choice. I show that the optimal menu and com-
munication scheme are again the outcome of a max-min problem. I then put more struc-
ture on the effort correspondence e and revisit the results of Section 4.1. In appendix B,
I consider another extension where I show that the DM benefits from using randomised
mechanisms that map a private message of the agent to a possibly random allocation over
tests.

I formalise unverifiable communication and unobserved effort choice as follows. Define
the effort correspondence as e : 7" x © = O with the restriction that § € e(t, §) for all
t € T. The set e(t, 0) denotes the set of types the type € can copy in test ¢. If type 6 copies
¢’ in test ¢, then type 0 generates a distribution over signals 7,(-|6"). I call this effort because

it will be the leading interpretation once I put more structure on e. The story I have in mind
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is that the set (¢, f) captures the set of types that type 6 can copy by putting less effort into
the test. Communication is modelled by a finite set C' of output messages with [C| > |A|.
The agent’s strategy isnow o : © — A(T xC xO) with the restriction that o (¢, ¢, 6'|0) >
0 only if @' € e(t,0). The payoff of type 6 from choosing (¢,c,6’') for a given « is
pre(a;0) = > a(t,c,z)m(2]0). Again, let 0® = (0(:|0))pcer. The DM’s payoffs

become

v(a,o?, o) =37 " w(O)o(t e 0'l0)alt, ¢, x)m(x]0)
0cA t.x 0'ce(t,0)
=Y > > w®)o(t,c 0'10)alt, ¢, x)m(x|0)

0ER tx 0'ce(t,0)

Note that absent any effort, i.e., e(¢,0) = {6} for all types and tests, the original model
contains the case of communication. Indeed, we can interpret each pair (¢, ¢) as a distinct
test. The set of feasible tests would then be 7" = {(t,c) : t € T, ¢ € C} with m.(+]0) =
m¢(+|0). Thus all the results from the previous sections extend to this case.

Let suppy o(+|0) be the support of a type’s strategy restricted to the test choice dimen-

sion.

Theorem 2. For any (o, 0%) € arg maxg ;4 mingz v(&, 6, 6%), an optimal menu is

M = Upea suppy a(-]0).

Additionally, for any ot € arg mingz maxs v(a, 0?, %), (o, 04, o) are the strategies in
the corresponding DM-preferred equilibrium.

Moreover,

* The DM does not benefit from commitment.

A is in pure strategies and each

* There exists a DM-preferred equilibrium where o
0 € A sends a different message deterministically, i.e., each A-type truthfully com-

municates his type.

The proof follows the same lines as the proof of Theorem 1. Theorem 2 shows that the
results extend naturally to an environment where communication and costless unobserved
effort are allowed. Because the DM can commit to a strategy, he can always guarantee

each A-type at least as much as he would have if he were to pool with another A-type. This
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argument guarantees that there is a solution to the problem with commitment where any
A-type separates from the other A-types.

To illustrate the consequences of unobserved effort and communication, I will focus on
a setup with binary tests: X = {L, H}. As in Section 4.1, we can define for each test ¢
the order >, such that § >; ¢’ if and only if 7, (H|0) > m,(H|#"). If the agent can exert
unobserved effort, the correspondence e is defined as e(¢,0) = {¢' : ¢ <, 6}. In the
context of a university admission test, it means that any student can achieve the distribution
of grades of a worse performing student. If the agent cannot exert unobserved effort, as in
the baseline environment, then e(¢,0) = {6}. In this new setting, signals have an explicit
meaning and signals H and L stand for high and low."”

An environment, 7T, is a set of set of feasible tests, i.e., 7 € 2. A menu has productive
communication if there are two messages c1, ¢z and a test ¢ such that the pairs (¢, ¢1), (¢, ¢2)

are on path and (-, t,¢;) # a(-, t, ca).

Proposition 7. Ler X = {H, L}. Assume that nonverifiable communication is allowed.
Let T ={T : thereist € T witht = t', forallt' € T'}.

o Ife(t',0) =10 :0 <y 0} forallt' € T, then a menu with one test and productive
communication is never strictly optimal and is sometimes suboptimal in environment

T.

Lett € T be such thatt = t' for allt' € T. If the test is ‘Imprecise at the bottom’,
i.e., thereis § € © and 0 € A with 0 <, 6 such that

w0 | S w0 Y w0 = Y wOmHe- Y wO)m(H0),
0cA,0<:0 0€R,0<:0 0cA,0<:0 0€R,0<:0
then there is an optimal menu containing t' < t.

o Ife(t',0) = {0} forall t' € T, then a menu with different tests and no productive

communication is never strictly optimal in environment T .

I interpret this result as showing that cheap-talk can be a powerful tool theoretically but

that menu design, even using a dominated test, is still likely to play a role in applications.

"This way of modelling effort is similar to the modelling choice of Deb and Stewart (2018) and Ball and
Kattwinkel (2022). The main difference is that in their setting the agent always has the possibility to get the
lowest grade with probability one. Here, the agent must always get the probability distribution of an existing
type. The two methods are the same if a type gets the low signal with probability one.
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When there is a Blackwell dominant test, cheap-talk, combined with the dominant test, can
provide more information than through menu design. However, using cheap-talk is not fully
robust to the introduction of effort provision. In any setting where the agent can voluntarily
obtain lower grades, cheap-talk alone cannot help the DM but introducing a less informative
test can. Below, I revisit the example of Section 2.1 to show the impact of introducing
effort and non-verifiable communication. Note also that Proposition 7 establishes that menu
design has no value whenever communication is allowed only when there is a Blackwell
dominant test.

With effort, condition ‘Imprecise at the bottom’ (U-2) is sufficient to include a dom-
inated test in the optimal menu. The intuition for this result is the same as the intuition
for Proposition 1. If the test is ‘Imprecise at the bottom’, the DM can introduce a domi-
nated test so that A-types at the bottom of the performance distribution can signal their low
ability.

Non-verifiable communication introduces other strategic concerns. Communication is
beneficial for the DM if there is productive communication in the DM-preferred equilib-
rium. If the DM wants at the same time (1) to react to the information in the test and (2) to
have different types using different messages, the DM’s strategy must be increasing in the
test outcome after some messages and must be decreasing after some other message.'®

These two considerations deliver the first part of Proposition 7. On the one hand, the
DM would like to substitute the choice of a dominated test with the choice of the dominant
test with a different cheap-talk message as a means of communication. This substitution
is in principle possible. But to make it incentive-compatible, the DM creates incentives
to reduce effort in the test after some messages, making the test completely uninformative
when these messages are used.

The following example revisits the example of Section 2.1 to illustrate Proposition 7. It
shows how non-verifiable communication is useless when the agent can obtain a low grade
easily. It also provides a situation where a menu consisting of two tests {¢,¢'} with ¢ > ¢’
is strictly better than offering {¢, )} where () denotes an uninformative test. An important
feature of this example is that the orders over types defined by the tests differ, i.e., >;7#>,.
It remains an open question whether including a strictly dominated test can be optimal if
>=>y forallt,t' € T.

Example. Let © = {Al, A2, R1} with A = {A1, A2}. Consider the set of feasible tests

I81f the DM’s strategy is increasing after two different messages, then all types have the same preferred
strategy and so they all choose the same message.
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= {t,t',0} where () is an uninformative test. The prior satisfies /(A1) < Zu(R1) <
((A2). The test ¢ is described by X = {H, L} and

1/2 ifz=1L 1/3 ifr=1L
m(x|Al) = m(z|R1) =
1/2 ife=H 2/3 ifr=H
0 ifz=1L
(x| A2) =
1 ifx=H

Define t' by 7y (H|0) = em;(H|0) + 7;(L|0) with e € (0,1/2).° Note that we have
Al <; R1 <; A2 and Al >, R1 >, A2.

We can interpret the example as follows. The DM is a university that cares about
technical skills and creative skills and these two skills are anti-correlated: the more creative
a type is, the less technical it is. Type A2 is a technical type and Al is creative type. The
type R1 is mediocre in both dimensions. The test ¢ is good at identifying technical types
whereas test ¢’ is good at identifying creative types. However, the ‘creative’ test ¢’ is less
precise than the ‘technical’ test t.

As derived in Section 2.1, the profits from the DM-preferred equilibrium in the case of
menus {¢} and {¢,(} are

7(t) = (A1) - 5 + p(A42) -1~ pu(R1)-

Wl

m(t,0) = p(Al) - ; + u(A2) -1 — p(R1) -

[GVIN )

In the case where only ¢ is offered, the DM accepts only accepts after signal H. In the
case where the menu {¢,()}, the DM accepts with probability 2/3 after observing () and
type R1 mixes between ¢ and (). Given that the DM only accepts after a high signal in
equilibrium, all types have an incentive to exert full effort in equilibrium.

Now let’s consider what would happen when introducing nonverifiable communication.
A DM-preferred equilibrium in this case would be one where all types choose ¢ but A1 and
A2 send different messages ¢, co. To maintain incentive compatibility, it must be that R1

mixes between the two messages, for otherwise one message would fully reveal the type.

The restriction to (0,1/2) is not essential to the qualitative message of the example but allows us to
consider fewer cases in the analysis below.
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The DM-preferred equilibrium is described as follows:

3 Al
ot | R1) = = % o(t,c1|Al) = 1 o(t, ca| A2) = 1.
The DM’s strategy is
0 ifz=1L 1 ifze=1L
Oé(xvtvcl) = a(xat7cl) - :
1 ife=H ; ife=H

In equilibrium, types Al and A2 send different messages and R1 mixes between the
two messages. To benefit from communication, the DM uses a strategy after c¢; that is
decreasing in the signal: o(L,t,¢;) = 1 > 1 = a(H,t,c;). Each of these strategies are
best-replies for the players.

The payoffs from this equilibrium is
3 2
m((t 1), (8 c2)) = p(AL) - 7 + pul(A2) - L = u(R1) - 5 > 7(t, D).

If we introduce unobserved effort in the equilibrium presented above, then 1, when
sending message ¢, would have a strict incentive to copy A2 to increase his chance to get
a low signal L. That would make the test completely uninformative as all types sending c;
would have the signal distribution of A1. By Proposition 7, it is not possible to use com-
munication in a way that incentivise effort and have the DM benefit from communication.

However, the DM can do better than the menu {¢, )} by offering {¢,¢'}. Indeed, con-

sider the following strategies:

Y RIIRDN) =27 5(t. R1|IR1) =1— = .5~/
o(t',A1|A1) =1, o(t, A2|A2) = 1.
The DM’s strategy is
0 ifx=1L 1=2¢  if.— ],
ax,t) = afz, t) = { 2079 :
1 ifx=H 1 ife=H

In this equilibrium, the creative type Al chooses the ‘creative test’ and the technical
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type A2 chooses the ‘technical test’. The mediocre type mixes between the two options.
The DM has a strategy that is always increasing in the signal: o(H,t) > «(L,t) fort = t, ¢
and therefore all types have an incentive to exert effort on the test. The profit from that menu
are

Tt ) = p(A1) - % + u(A2) - 1= p(R1)- g > (1, 0).

Relation to verification models with communication. Proposition 7, in the case of
e(t,0) = {0}, can in fact be extended to arbitrary test restrictions when one test is more in-
formative than all the others. This result derives from Lemma 2 that says that any Blackwell

dominant test is part of an optimal menu.

Corollary 4 (to Lemma 2). Suppose there is t € T such thatt = t' for all t' € T,
nonverifiable communication is allowed and e(t',0) = {0} for allt' € T. Then an optimal

menu is {t}.

This result tells us that when there is a Blackwell dominant test and no unobserved
effort, all the communication can be done through the cheap-talk communication and there
is no loss of optimality to only use the dominant test ¢. At the same time, if the dominant
test ¢ is not A-types unreliable, there is no benefit to giving a choice of test (Proposition 1).
Thinking of the set of available tests as pairs of test and message, these results taken to-
gether show when communication is not needed to reach the optimum, i.e., all types choose
the same message-test pair in a DM-preferred equilibrium. Similarly, when the dominant
test is A-types unreliable, introducing another message-test pair is optimal, i.e., the domi-
nant test is used in combination with different messages. A similar argument can be made
for the conditions in Proposition 2 and Proposition 3 when there are more than two signals.

This discussion shows that the framework of this paper can also accommodate the study
of models of communication with verification as in Silva (2024) or Weksler and Zik (2022).
In particular, Silva (2024) studies a model with the same payoffs. The condition from
Proposition 3 appears in Proposition 2 of his paper and he also notes that monotonicity de-
livers no value of communication (Proposition 1 in Silva, 2024).2° Proposition 1 combined

with Corollary 4 extends the results of Silva (2024) by giving tight conditions under which

20In fact, Proposition 2 from this paper can be derived from Silva’s (2024) Proposition 1 in the following
way: Any menu with a dominated test can be replicated with copies of the dominant test. We can then apply
Silva’s (2024) result to show that the DM cannot do better than with only one copy of the dominant test.
The proof of Proposition 2 has an independent interest because I show that whenever the dominant test is
included with a dominated test, the equilibrium payoffs are unique. It also uses the more permissive concept
of accuracy (Lehmann, 1988) and is therefore more general.
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the DM benefits communication when the test is binary. Silva (2024) and Weksler and Zik
(2022) highlight monotonicity as a key property on the test to determine that communica-
tion does not benefit the DM. Instead, I show that single-peakedness, a generalisation of
monotonicity, is the key sufficient condition to guarantee that communication, or adding a
dominated test, does not benefit the DM. Finally, Proposition 7 also shows that communi-
cation is vulnerable to unobserved effort in cases where communicating through a choice

of test is not.

6 Conclusion

That choice reveals private information is a hallmark observation of economic theory. In
this paper, I study how the choice over tests, objects that themselves reveal information,
can be leveraged by a decision-maker as an additional source of information. To do so, I
show how the statistical properties of the tests interact with the strategic choices of agents
and what consequence this interaction has for the design of menus. In particular, I provide
conditions under which the decision-maker can benefit from a menu across several envi-
ronments where tests have different statistical properties. I also show that in several natural
environments, the DM cannot do better than using a single test.

The DM faces two constraints to create choice separation: the agent’s incentive con-
straints and his own best-reply constraints. I show in Theorem 1 that this problem is
equivalent to solving the DM’s problem without best-reply constraints through a max-min
characterisation. This characterisation stems from the structure of preferences and is thus
applicable in a wide range of mechanism design settings, beyond choices of tests.

Throughout the paper, I provide conditions under which equilibrium forces limit whether
the DM can benefit from offering a menu as well as use the max-min characterisation to
show when including a test in the menu is optimal. An important technical observation is
that single-crossing conditions on the acceptance probability play a key role in having a
singleton menu. While single-crossing conditions are usually used to maintain separation
in signalling and screening models, in this case separation reveals too much information
through the choice. This separation in turn makes it impossible to maintain the incentives
to separate in the first place.

Finally, putting more structure on the feasible tests forces us to think about what are
reasonable and economically meaningful restrictions on tests. I have considered three pos-

sibilities in this paper and introduced a new order on experiments to characterise the notion
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of difficulty. Developing more ways of restricting feasible tests would allow to explore

more trade-offs between experiments and would further enrich the literature on test design.

A Appendix: Omitted proofs

A.1 Proofs of Lemma 1 and Theorem 1

Lemma 1: The problem the DM needs to solve when committing to « is

max Y u(6) Y6 (tl0)peas6) = > u(®) Y5 (tl6 )il ¢)

0cA teT 0'eR teT

s.t. 5(+0) € arg maxZa(t\@)pt(a; ), foralld € ©

teT

Therefore, ), o (t|0)p:(a; 0) = max,(j9) >, o(t|0)p:(c; 0) for all . We can plug

this expression in the DM’s maximisation problem to obtain

maxm:%xm}i%nz,u Za t10)pe(c; 0) — Z w(6 Za(ﬂﬁ’)pt(a;el)

0cA teT 0’€eR teT

where the min is obtained because of the minus sign.

A =R

Theorem 1: Let (a,0) € arg max, 54 mingr v(a, 5, 5%) and

ol Gargmlnmaxv( ot G

R

R>.

Note that o4 is fixed in the min-max problem. I will now show that these strategies are

equilibrium strategies.

Because the order of maximisation does not matter, o € arg max min v(a, g4 JR)

4 e argmaxv(a 4,0 o 3, o(t0)pia;0) > Y, cp5(t0)pi(c; 6)
for all & € A and 4. This last expression does not depend . Therefore, o €

arg max v(a, 54, o).

Moreover, o

Similarly, o € arg maxminv(a, 0, 5%). Because v is linear in both & and 0%, (o, &

is a saddle-point of v(-, o, -) by the minimax theorem. As for 04, 0% € arg minv(a, 04, 5%) <
Soier o(t0)pi(e; 0) > 3, 0(t|0)pe(a; 0) for all § € R and 6. Therefore all strategies

are best-reply.

)

Beliefs on-path are formed using Bayes’ rule and off-path beliefs are chosen to justify
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the off-path actions of « (these beliefs are always possible to find as any action is best-reply
to some beliefs).
Note also that we can without loss of generality take o to be in pure strategy as it is

maximises a linear function.

A.2 Proof of Lemma 2

Take ¢t = t'. From Blackwell (1953), we know that the set of distribution of actions con-
ditional on the type under ¢ contains the one under t'. Therefore, for any «(-, '), there is
a(-,t) such that

forall§ € A, Za(a:,t)ﬁt(xw’) > Za(x,t’)wt/(x|6’),

forall' € R, > a(x,t)m(x|0)) <> ale,t)my(z|0").

With this observation in hand, we can prove our result. Suppose that ¢ is not part
of the optimal menu. Thus we can find an solution of the max-min problem, (o, 04) €
arg max,, ,a mingr v(’, o', o) with o(t|0) = 0 for all § € A. Take a test ¢’ used in the
solution by some § € A. Then, we can construct a (&, %) such that p;(a;0) > py(a; ),
pe(@;0') < pu(a; @) forall & € R, 5(t|¢) = 1 and 6 = o otherwise. This strategy

constitutes a solution to the max-min problem.

A.3 Proof of Proposition 1

Suppose the dominant test is A-types unreliable. Suppose that only ¢ is offered in the
optimal menu and that the DM’s strategy is such that a(x;,t) = 1 and a(xo,t) = 0.
(Because there is only one test offered, we can restrict attention to pure strategies without
loss of optimality.)

By condition (U-2), there is # and # € A with 6 <, § such that

ST ulO) () — m(l) = S u(0) (mula]8) — il ]6)).

0cA,0<:0 OER,0<+0

The DM can modify his strategy « at any other test ¢’ with a(z,t') = m(x;|0) for z =
x1,To. Then, py(c;0) < pp(a;0) only if & <, 6. By condition (U-2), there is at least
one A-type willing to deviate. The payoffs of types choosing test ¢ are left unchanged.
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Condition (U-2) also guarantees that the DM’s payoffs weakly increase for types choosing
t'. Therefore it is a profitable deviation or another optimum in the max-min problem.?!

A similar reasoning holds by applying (U-3) if a(xy,t) = 0 and a(xg,t) = 1.

Finally, if a(x1,t) = a(x,t) € {0,1}, then we can always add another test with the
same strategy and have at least one A-type choosing it.

Suppose the dominant test is not A-types unreliable.

I first show that whenever for any tests ¢, with ¢ = t/, p;(c; 0) — py(a; 0) is single-
crossing in # with respect to the order >;, for any «.. Because ¢ = ¢/, thereis f : X x X —
0, 1] such that 7 (Z|0) = B(z1,Z)m(21]0) + B(xo, Z)m(20|0) and > B(Z,x) = 1 for
T = x1,x9. Type 6 € O prefers test ¢’ over ¢ if

oz, 1) (B(z1, z1)m(21]6) + B(wo, 21)me(20]6))
+a(wo, ') (B(21, zo)m (1]0) 45 (w0, To)m (20|0)) — (a1, t)me (21]0) — (o, )7 (20]6) > 0

Using that 7, (z]0) = 1 — m;(x1]0), the expression on the LHS is linear in 7, (1 |0). There-
fore, either p;(a;0) — py(a;0) > 0 implies pi(a;0') — pp(a;6’) > 0 for all " >; 6 or
pi(e;0) — pr(; 0) < 0 implies p;(c; 0') — py(a; 0') < 0 for all 0" >, 6.

Suppose that condition (U-1) is not satisfied.

Suppose there is a menu with both ¢,t'. Take A;, Ay € A with A; <; A, and be-
cause the signal’s labels are arbitrary, suppose without loss of generality that A; chooses t’
and As chooses t in some equilibrium. Let a denote the DM equilibrium strategy in this
equilibrium.

Again, because t = t/, thereis 5 : X xX — [0, 1] such that my (Z|6) = S(x1, 2)m(21]0)+
B(zo, Z)mi(x0]0) and Y B(Z,x) = 1 for & = 2y, x. Type 0 € © prefers test t’ over ¢ if

oz, 1) (B(z1, 21)m(21]6) + B(wo, 21)me(20]6))
—l—oz(xo,t')(ﬁ(ajl,xo)wt(x1\0)+5(xo,3:0)7Tt(a:0|6‘))—a(3:1,t)wt(xlw)—a(xo,t)ﬂt(mow) > 0.

210ne could worry that we do not need (U-2) and (U-3) to hold simultaneously to show that including a
dominated test is optimal. But we cannot have a(x1,¢) = 1 and a(xo,t) = 0 as a best-reply to ¢ if (U-3)
does not hold.
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Assuming 7;(xo|0) > 0, this expression becomes

m(21]0) mi(21]6)

(o] 6)

oz, t) (B(z1, 21) + B(zo, 21)) + a(wo, t') (B(z1, 20) + B(wo, z0))

— a(z, 1),

i (21]6)
i (x0|6)

We can only have m;(z|0) = 0 if # = max © where the max is taken with respect to >,

which is linear in

, a strictly increasing function of 6 (recall that § £, ¢’ for all 0, ¢").

so the case m(zo|f) = 0 can be true for at most one type.
To have A; choose ' and A, choose t, the payoff difference between ¢ and ¢ must be
strictly decreasing in 0, i.e.,

a(xy,t")B(xy, x1) + oz, t') (21, 20) — alxy,t) <O. 3)

A necessary condition for (3) to hold is that (1, t) > 0. Note the strict monotonicity also
implies that there is § € A such that any § >, 0 prefers ¢ and any § <, 0 prefers t'. Let
AT ={0cA:0>0and Rt ={# € R:0>,0, forall # € A}. Condition (U-1) not
satisfied implies that only types in AT U R™ choose t. Further, for any 0 € A", #' € RT,
;t((;l'f,)) < ::((ig‘lg,)), i.e., we have MLRP with x being the high signal on A* U R*. This

observation combined with «(z1,t) > 0 imply that a(xg,t) = 1 (Milgrom, 1981).

But then no type ever prefer ¢’ over ¢. Indeed, the condition to prefer ¢’ over ,

(a1, t)B(w1, 1) + a(wo, ') B(21, 19) — awy, t))me(a1]6)
> (1 — a(ay, ') B(xo, 1) — (o, ') B(20, T0) ) T (20| 0)

is never satisfied as the LHS is strictly negative because (3) must hold and the RHS is
positive because §(xg, x1) + S(zo, xo) = 1 and o(Z,t') < 1, T = xq, 2.

Thus there cannot be an equilibrium where another test than ¢ is chosen.

Suppose that condition (U-2) is not satisfied. Suppose also that a nonsingleton menu M
is optimal. Given that any probability of acceptance p, («; 0) with ' < ¢ can be replicated
with the test ¢, we can, for the purpose of showing that a singleton menu {¢} is optimal,
focus attention to M = {ty, ..., t,,} with 7, (:|0) = m(:|0) fori = 1,...,n.

22Tf the expression is constant in 6, then all types have the same probability of acceptance in ¢ and ¢’. So
the DM can merge ¢ and ¢/, have the same payoffs and not change the incentives to choose other tests.
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First, observe that the set of types preferring test ¢; is always an interval>® because of
the single-crossing condition on p;(a;6) — py(«;6). Label tests by the position of the
types choosing them in the >; order, i.e., ¢; is chosen by types in the lowest interval, ¢,
second lowest, etc. Using the single-crossing condition again, if we eliminate ¢,, all types
previously preferring ¢; will choose 5.

I now show that we can focus on solutions where a(xg,t1) > 0, a(x,t3) > 0 and
either (a) a(x1,t1) > 0 = a(wo,t2) = 0 or (b) a(zg,t2) > 0 = a(zy,t;) = 0.

First, I show that (g, t1) > 0. Suppose it is not the case. Then type 6 chooses ¢; over
to if a(xy, ty)m(21]0) > alxy, to)m(21]0) + a(zo, t2) (1 — mi(21]6)).

Rearranging, we get (a(z1,t1) — a(z1, t2) + oo, ta) ) me(21]0) > o, ta).

To have any type choosing ¢, it must be that a(z,t;) — a1, t2) + a(zo,t2) > 0.
But then if py, (a;0) > py,(a;0) then py, (;0") > py,(a; ') for all @ >, 6. Combined,
these observations contradict that ¢; is chosen by lower types than the ones choosing 5.
Therefore oz, t1) > 0. Similarly, one can show that o(z,t2) > 0.

We must also have that either (a) a(xq,t1) > 0 = a(zg,t2) = 0 or (b) a(wo,ta2) >
0 = a(xq,t;) = 0. If none of these alternatives hold, the DM must be mixing after both
signals in at least one of the two tests or the DM follows the same strategy in both tests. In
that case, we can eliminate ¢; with no effects on incentives or DM’s payoffs.

Let 0 be the largest type with respect to >, choosing t; with positive probability. Denote
by A=AN{0 <, 0} and R = RN {0 <, 0}. Denote by ji(f) = o(t1]0)u(f). Note that
by Theorem 1, we can restrict attention to A-types playing a pure strategy and therefore
w(8) = fi(f) forall § € A,

First assume that o(z1,¢;) > 0 and «a(z, t2) = 0. It is strictly profitable to include test

t; in the menu if the following system of inequalities holds

o, 1) (3 ) l6) — 32 ) m119) + o, 1) (3 u)maCanlt) — 3 )m(xol)
> a@hﬁ)(Zﬂ(@)m(ml‘Q) - Zﬁ(e)ﬂt(%w))a

alzy, t1)m(x1]0) + a(xg, t1)m(20]0) > a(xq, ta)m(x1|0) forall 6 <, 0

The first line guarantees that payoffs from including ¢; are larger than eliminating it and

have all types choosing ¢; choosing t,. The second line insures that types have indeed an

2 A set ©' is an interval if there are 6, 0’ such that ©' = {6” : § <, 0" <; ¢'}.

37



incentive to choose t;. Note that we must have 1 > «(z1,t2) > «a(xy,t;) for otherwise no
type would pick ¢o. Setting a1 = a(z1,t2) — a(x1,t1) and ag = «(zo,t1), we obtain the

following other system of inequalities: there is oy, ap > 0 such that

al(z p(0)m(z1|0) — Z [i(0)(21]0)) — ao(z p(0)me(xol0) — Z [i(0) 7 (z0]0)) < 0,
fcA 0eR feA 9eR
aym(z1]0) — apmi(xold) < 0 forall 0 <, 0

(%)) S 1, (05} S 1-— Oz(l’l,tl).

We can apply a theorem of the alternative (e.g., Rockafellar, 2015; Ball, 2023) to say
that this system of inequalities cannot hold while the following does as well: there is
Y, 2, A > 0 such that

y( D nO)m(x110) = Y @O)me(1]0)) + Y zome(21]6) + At = 0,

fcA AER 0<:0
—y (3 O)m(wol0) = 3 O ol0)) = D zomilwold) + o > 0,
0cA 0cR 0<¢0

(1 —a(z1,t1))A + Ao <0,
(1 — Oé([L‘l,tl))Al + )\0 <0 ory > 0.

I will now show that a solution to the second alternative exists. First, set A\ = 0.

We can rearrange the first two inequalities as

y( 3 (O (@]6) = 3 pO)m(l0) = = 3 zomlal6) @
THIMOLEADES SOLTEADNEN DIOES SO B SEERATAD)
7 (&)

Recall that Condition (U-2) not being respected implies that

m@l)( S wO) - S w0) < S u@ml) - S uO)m(xlo).

A, 0<:0 OER, 0<:0 0cA,0<:0 0ER, 0<:0
(6)

Given that at most the type 6 is indifferent in equilibrium, if equation (6) holds for p, it also

holds by replacing y by ji. (Otherwise all types are indifferent between ¢; and ¢5.)
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Suppose first that ), 5 1u(0) — > 4z i(0) < 0. Then we can set y = 1, zp =
— > oca(0) + > ycr ii(0) and zg = 0 for 6 # §. Both inequalities (4) and (5) become

m@l)( D, nO) = >, @) < D, pOm(nl0) - Y wO)m(xn)

0cA,0<:0 0ER, 0<40 0cA,0<.0 0ER, 0<:0

This inequality holds as equation (6) holds. Therefore it is profitable to eliminate ¢;.

If > peqa () = > i i(0) > 0, we get from equation (6) that ), 1(6) 7, (21]0) —
> ocr (0)m(21]0) > 0. In this case, we must have a(z,¢;) = 1 in equilibrium. Because
some types choose ¢, in equilibrium, it means that a(z,t;) = 0 and a(zq,t2) = 1. But
then the DM follows the same strategy in both tests and we can eliminate one.

If instead we have a(xo,t2) > 0 and a(xq,t;) = 0. It is strictly profitable to include

test ¢; in the menu if the following system of inequalities holds

oo, 1) (3 1Omol8) — 3 iO)mrol8)) > e, t2)( X pOm(a18) — 3 O (a16))
feA 9eR 9eA 0eR
+ (o, tz)(z,u(@)ﬂt(xom - Zﬂ(e)ﬁt(ﬁow)%
feA 0cR
a(zo, t1)m(x0]0) > alzy, to)me(21]0) + a(zo, t2)m(x0]0) forall <, 6

To have any type choosing ¢;, we must have «(xg,t1) > «a(xg,t2). Therefore, as before,

we can rewrite this system of inequality as, there is a3, g > 0 such that

041(2 p()me(x1]0) — Z /1(9)777&(951’9)) - Oéo(z () me(wol0) — Z /1(9)%(960!9)) <0,
fcA 0cR 0cA 0ER
ayme(x1]6) — apm(xo|@) < 0 forall § <, 0,

Qp S 1 - Oé(fﬂo,tg),@l S 1.

This is exactly the same system as before except that the bounds on o, and o have changed.
If Y peq 11(0) = > g 1(0) < 0, we can use exactly the same solution to the alternative
to show that there is no solution to the system of inequalities above. If >, 5 u(0) —
> o i(0) > 0 then by (U-2), we have » 5 pu(0)m(21|0) — Yy i(0)me(21]0) > 0. In
this case, we must have (1, ¢1) = 1 in equilibrium. A contradiction.
Suppose that condition (U-3) is not satisfied. This case is treated in the same way as if

condition (U-2) is not satisfied by inverting the roles of z; and z.
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A.4 Proof of Proposition 2

Note that in an MLRP environment, the strategy of the DM takes the form of a cutoff
strategy. For each test ¢, there is x; € X such that a(x,t) = 0 for 2 < x4, a(z,t) =
1 for > x; and a(zy,t) € [0,1]. From Lemma 2, we know that there is an optimal
menu containing the Blackwell most informative test. Because all tests are MLRP and
the DM'’s payoffs satisfy single-crossing condition, the Lehmann order is well-defined and
the Blackwell order implies the Lehmann order (Lehmann, 1988; Persico, 2000). Let =~
denote the Lehmann order.

The Lehmann order is defined on continuous information structure. But as outlined in
Lehmann (1988), we can always make our conditional probabilities continuous by adding
independent uniform between each signal. Let’s assume, without loss of generality, that
X = {1,...,n}. The new distribution over signal is §|0 = Z|0 — u where u ~UJ0, 1].
Denote by F; the cdf associated with the new information structure.

We have that ¢t = t" if y*(0,y) = Fi(y*|0) = Fy(y|0) is nondecreasing in 6 for all y
(Lehmann, 1988). In particular, this condition implies that if F}(y|0') < (<)Fy(y'|0") then
Fi(y|0) < (<)Fy(y'|0) forall @ > 0'.

Let « be the optimal strategy and z; be the cutoff signal associated to each test. To each
(a(+, ), ;) we can associate a y, = z;, — oy, t).

If ¢ is part of an optimal menu, it must be that there is some 6’ € R such that p;(«; ') >
pr(a; @) for all ', Or put differently, Fy(y;|0") < Fy(yy.|0') for all ¢'. But then F;(y;|0) <
Fy(yp|0) for all ¢’ and all > ¢, in particular all # € A. Therefore all type in A prefer
test ¢ as well and there is an solution of the max-min problem where all types in § € A
choose t. (If there is an A-type that is indifferent between ¢ and ¢’ then all types in R must

be indifferent or prefer ¢’ so choosing ¢ is an equilibrium strategy for such A-types.)

A.5 Proof of Proposition 3

Suppose that ¢ is the only test used in the optimal menu. Define a test ¢’ such that for all
0eco,

mo(xl) = Y m(il6),

T=x,x’

7 (2|0) = m(2|0), for all T # x, x'.
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The test ¢’ pools signals = and z’ together and is otherwise identical to ¢. We have ¢ > ¢’ as
any strategy under ¢’ can be replicated under ¢.

Let 1 be such that for all 0 # A, Ay, Ry, () =~ 0 and such that when only ¢ is chosen,
the DM’s best-reply is a(z,t) = 1 and a(2’,t) = 0. In the max-min problem, consider

the deviation & such that G(z,t') = — m;{j;ﬂ;‘j&q yh

) + € for some small e > 0and & = «
otherwise.

Under this alternative strategy, p;(«; A1) < py(&; Ay) but for e small enough p;(c; ) >
py(&; 0) for @ = Ry, As. Therefore A; is accepted with strictly higher probability and the
other types with the same probability as they choose the same test. If the prior on other

types is sufficiently small, the deviation is still strictly profitable for the DM.

A.6 Proof of Proposition 4

(=) The proof is similar to the one in Milgrom (1981). Denote by Gy(-|x) the cdf of

posterior beliefs after signal x in test t. For all 6 > ¢,

i (z]0)
m(z]0")

my(x|0)
o (2]6)

> u(0)

Take some 0* > 6’. Summing over 6, we get

m(z]0) 7y (x]6)
> O 2 > ) s

0>6* 0>6*

Inverting and summing over ', we get

Lo MONT(2|0) 3 gesg U0) Ty (2]0)
2 pser MO (2|0) T D ogo e 11(0)m (]6)

which implies

Gi(0"|x) Gy (0*|x)
< * < (0
1= Gi(07]2) = 1- Gu(0°a) Gi(0"|x) < G (0])

(<) Take # > 0" and let u(0) + p(0') = 1 (i.e., there is probability zero on other

types). If u(:|t,x) =rosp p(:|t’, x), then we have p(0|t,x) > p(0|t',x) and p(&'|t,x) <
¢ (z|0) > g (0" )me (x[0") m¢(z]0")
ro@l0) 2 g w0 @lo) 20 7 Gy S
7 (x|6) > m (x]6)

mi(x]60”) = my(2|07)"

w(0'|t', ). By Bayes’ rule these inequalities imply

> g (0" ) 7o (x]0”)
2 g (0" 7y (]67)

. Rearranging, we obtain
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A.7 Proof of Proposition 5

The way this proof proceeds is by fixing a menu and dividing tests in two categories: (1)
those for which a(x¢,%) € (0,1) and a(x1,%) = 1 and (2) a(xo,%) = 0 and a(x,1) €
(0, 1]. T exclude the possibility that the DM always accepts or rejects after any signal as
it would either be the only test chosen in equilibrium or never chosen. Then, I show that
within each category, it is without loss of optimality to have at most one test. It is thus
optimal to have at most two tests in the menu. The last part of the proof shows that the
resulting menu is dominated by having only one test.

If there are two tests, t > t' such that a(xg,%) = 0 and a(zy,%) € (0, 1], I will show
that, py(a; 0") > pp(a; @) = p(a;6) > py(a;0) forall § > 0'. Take two tests such that
oz, t) = 0,t > t'. Let a, o’ denote their respective probability of accepting after ;.

Define a(0) = «a(0)mi(x1|0) — o'y (21|0) = 0. Rearranging, «(0) = a’”t’((“”g)) From our
assumption on the difficulty environment, «(#) is decreasing in 6. If p;(a; 0") > py(a; ')
for some 0’ then o > «(#"). Then o > «(6) for all 6 > 6.

In equilibrium, we must have that there is one ' € R that chooses ¢ and thus for all
0 € A, pi(a;0) > py(c;0). Then there is an solution of the max-min problem where t' is
never chosen. A similar argument can be made for all tests where a(x,t) > 0.

Thus we conclude that it is without loss of optimality that the optimal menu has at most
two tests.

Suppose the optimal menu uses two tests, t > t’. I will now show that it must be that
a(xo,t) € (0,1) and a(zy,t") € (0,1), i.e., the DM must accept in the hard test when
there is a fail grade and accept in the easy test only if there is a pass grade. Suppose it
is not the case and denote by «, o’ their respective mixing probabilities. Define «(0) =
a(0)m(x1]0) — 'y (20]0) — 7w (21]0) = 0, which is equivalent to «(#) = a’m +(1-

/) 7y (21]6)
m(z1]0)

tif @ > «(0). Thus if one § € A chooses t all § € R choose ¢ and there is no pooling of A

Again from our assumptions, this function is decreasing in 6. A type 6 chooses

and R-types on t/, or it is payoff equivalent to just offering ¢. Therefore, a(xg,t) € (0,1)
and o(z,t") € (0,1) for t > t'. If the DM mixes, he must be indifferent and thus we have

ZM o (t0)m:(zol6) — Z (0o ()0 )i (20]0) =

0cA 0'cR
S wO)o (10 (al6) = S (@) (€10 ) (1]0") =
0cA 0'ceR

In the easy test, because the DM rejects with positive probability after x; and rejects
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for sure after x (as he uses a cutoff strategy), his payoffs from ¢’ is 0, i.e., he does as well
as rejecting for sure.

In the hard test, he accepts with some probability after x( and thus his payoffs are

> _u0a(tl) = > pl@)o(t0).

fcA 0'er

that is the payoffs he would get from accepting all types choosing ¢. Thus the overall
payoffs from the menu is ), , 11(0)o (t]0) = >y cp 11(0')o(t]0). Offering a menu is better
than a singleton menu if this value is strictly greater than offering ¢ and following the signal

> ul@)o(t0) =Y p@)o () > u(O)m(1|0) = > (O )mi(21]0)

e A 0’ceR fecA 0’eER
= o(t]0)u(O)me(x1]6) + > o (¥'|0) ()7 (x16)
A 0cA
= 2 ot )mi(21]6) — D7 o (¢]8)(O)m(1|0)
0'eR 0'eR

We can rearrange and use the indifference condition at (xg, t) to get

0> a(t10)u(@)m(x1|0) = > o(t'0))u(0),(21]0)).

fcA 0'cR

This inequality implies

- Zoco o (10)p(O)me(21]6) (

7 T e 0@ 0)(0)mi(21]6) Z"“”e)“(@)”t(%!@—Za<t’!9/>u<9>m<x1\e'>>.

fcA 0'cR

Using the indifference condition at (z1,t), we can replace 0 on the LHS and get

1
S, o (8]0)1(0) 7y (21]0) (ZM o(t'0)my(x1|6) — ZM 0o (t'|6' wt/(x1|9)>

0cA 0'er

~ Zga(t'w);(e)ﬂt(xlw) (Z o(#']0)u(0)m,(1]0) = > o—(t’ye’)u(e)wt(xl\ef)>

fcA 0'cR

But because ¢ is more difficult than ¢/, we have u(0|x1,t) =rosp 1(0|x1,t"). Thus we get

a contradiction.
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A.8 Proof of Proposition 6

Proof. Suppose condition (2) holds.

Suppose that all types choose the same test testing dimension j. Take (éi,éj) €
arg minge 4 py; (cv; ). Because p;, (av; 6;, 6;) is constant in 6;, we have (6;, f,) € argming.q pe, (0 0)
as well and from condition (2), (6;,6,) € A. Consider the deviation in the problem with

commitment to (&, §) such that for ¢,

« a(-,t;) is set so that it has a cutoff structure and py, (&; 6;,6,) = p,(; 0;, 0,) + € and

a(-,t;) = af-, t;) otherwise.
* 5(t]6;,0;) = 1 and (-|0) = o(-]0) otherwise.

Because the test ¢; has the strict MLRP when restricting attention to dimension %, for
all 0; < 0;, p;,(&;0;,0;) = mingee pi, (o 0) 4 € > py,(&;0;,0;). Therefore, for 6; < 0;,
P, (o;0) > py,(&;0;,0;) if € is small enough. These inequalities imply that no other type
has an incentive to choose test i but (6, éj) € Ais accepted with strictly higher probability.
Thus the menu with only test j cannot be the optimal menu.

Suppose condition (2) does not hold.

If condition (2) is not satisfied, then there a dimension, say 1, and éz € O such that
(64, 9~2) € R. By the monotonicity of payoffs in the bidimensional environment, we have
that (6, ég) € R for all 6, € ©,. Moreover, for all 0, < 0, and all §; € O, (01,62) € R.

Now suppose i is such that (6, 0;) > > _oy20, H(01,05) for all 6, € ©;. And that
w(01,0) =~ 0 for all (01,05) € R such that 05 > 0.

I am going to show that {¢5} is optimal when ¢; fully reveals dimension 1. Because this
test can replicate the strategies of any ¢4, it is enough to prove our claim. Suppose there is
an optimal menu {t;,?>}. From our assumptions on x, the DM follows a cutoff strategy
after ¢o. That’s because his payoff is monotone along that dimension, ignoring (61, 6s) € R
such that 6, > 6, whose prior probability is close to zero. So it does not upset the cutoff
structure of the best-response. The cutoff strategy implies that py, («; 61, 02) > py, (a; 61, 9~2)
for all 6, > 6, because the likelihood ratio is strictly increasing.

Suppose that some (61,52) chooses t; with probability 1 in equilibrium. Because
(01, 52) > 29/2#92 w(61,04) for all §; € O, it must be that the best-response is a(z =
01,t1) = 0 (recall that ¢; fully reveals ). Thus py,(a; 61, 605) = 0 for all 6, € O, other-
wise there is a profitable deviation. Either this contradicts the fact that the DM best replies
or in equilibrium the DM rejects after all signals in every test. But then he is weakly better

off only offering 7.
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Thus to have {t1,¢2} strictly better, it must be that all (6, 52) choosing ¢; mix in equi-
librium. This mixing means that p;, (v; 61, 05) = py, (cv; 61, 65). But by the cutoff structure
of a(+,t3) and the strict MLRP assumption, we have py, («; 61, 02) > py,(a; 61, 92) for all
0y > 0, and Pry (501, 02) < pp,(a; by, 0~2) for all f < 0. Thus t, is strictly preferred for
all (01, 02) € A. Thus choosing only {5} is an optimal menu. O

A.9 Proof of Theorem 2

The proof follows closely the one of Theorem 1. Let 77 = {(t,c) : t € T, ¢ € C'}. To
simplify the notation, I will study the problem using 7" as the set of feasible test. The

problem the DM needs to solve when committing to « is

max p(6) Y G(EO0p(ai0) = D w@) Y a(t,006)p(a: )

feA teT’ fce(6,t) 0'cR teT’ fce(d',t)
s.t. 5(+|0) € argmax Z o(t,00)p,(a;0), forall§ € ©
teT’ ,Oce(0,t)

Therefore, >, ;55(t, 010)p:(a; ) = max,(p) dugolt, 0|0)p.(c; 0) for all §. We can
plug this expression in the DM’s maximisation problem to obtain

max max min > u0)> ot 010)pi(c;0) = > ul(0) Y o(t, 616" )pi(as; 0)

fcA t,0 0'eRr t,0

where the min is obtained because of the minus sign.

Let (o, o) € argmaxg ;4 mingr v(@, 6%, 6%) and o € arg ming» maxz v(a, o4, ).
Note that o is fixed in the min-max problem. I will now show that these strategies are
equilibrium strategies.

Because the order of maximisation does not matter, 0 € arg maxminv(a, 4, 5%).
Moreover, 0 € argmaxv(a,d4,0%) & 3 50 (t,0]0)pi(c; 0) > > g0t 010)p:(cv; 6)
for all & € A and 4. This last expression does not depend . Therefore, o €

arg maxv(a, 54, o).

o
Q;

Similarly, o € arg max minv(a, 0?4, 5%). Because v is linear in both o and ot and that

the set of strategies are convex, (o, o%) i
rem. As foro?, o € argminv(o, 0,6%) & 3, ;o (t|0)pi(a; 0) > >, 5(t10)pe(r; 0)

for all @ € R and 6. Therefore all strategies are best-reply.

is a saddle-point of v(-, ¢, -) by the minimax theo-

Beliefs on-path are formed using Bayes’ rule and off-path beliefs are chosen to justify
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the off-path actions of « (this is always possible to find as any action is best-reply to some
beliefs).

Note also that we can without loss of generality take o to be in pure strategy as it is
maximises a linear function.

The only thing we need prove is that it is optimal to have a different message for each
type 6 € A, the rest follows from Theorem 1. Suppose it is not the case and take a solution
(a, ) of the max-min problem where the A-types play a pure strategy.

Then, there is 6,0, € A and (t,¢) € T x C such that o(t, ¢, 61]6;) = o (t, ¢, 0,|62) = 1
(if they use a different test then we can also change the message and nothing is changed).
Consider the alternative strategy ' where, for some unused (¢, ¢’) in the original mecha-
nism, o'(¢t,d,z) = a(t,c,x) forall z € X and o/(t",",z) = o/(t", ", x) for all other
(t",d") € T x C and all z € X otherwise. The new strategy o is thus the same as « but
makes sure that if the pair (¢, ¢’) is chosen, it uses the same actions as (¢, ¢). Now consider
the following strategy 6 in the auxiliary max-min problem, &(-|0) = o(-|0) for 6 # 6,
and (t,'|6;) = 1. This strategy gives the same value in the max-min problem as under

4). Moreover, any deviations under o gives the same payoff than under o. Therefore,

)

(o, 0
(o/,6%) is an solution to problem with commitment.

A.10 Proof of Proposition 7

Suppose e(t,0) = {0' : 0’ <, 0}. Denote by 0, a type such that 0, <, 6 for all §. Take an
equilibrium with productive communication and only one test is used. I will show that this
equilibrium must be payoff equivalent to a setting where all types send the same message
and choose different tests. If a(L,t,¢) = a(H,t,c) € {0, 1}, this strategy would give
either a strict incentive to all types to choose message c or a strict incentive not to choose
it. Suppose it is not the case. After any message c and test ¢, there are four possibilities.
(D if a(L,t,c) > a(H,t,c), all types sending message ¢ have a strict incentive to copy
0, and this strategy is equilibrium behaviour only if ) ", , p1(8)o(t, ¢, 0,|0) = > pcp 1(0)o (2, c,6,10).
(2)if0 < a(L,t,c) = a(H,t,c) < 1,itmusthold that 3~y 4 D grc. (0 M(0)(t, ¢, 0']6) =
2 oer 2oeero) MO (t, ¢, 0']0).
3)if 0 < a(L,t,c) < a(H,t,c) < 1, then it is a strictly dominant strategy to copy it-
self for any type. Italsohastobethat ), , 1(0)o(t,c,0|0)m (x|0) = >y g 1(0)o (2, c, 0]0) 7, (|0)
forx =L, H.
4)if 0 < «a(L,t,c) < a(H,t,c) < 1, with at least one equality, then there are two
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possibilities:
(@ 0=a(L,t,c) <a(Htrc) <1
(b)0 < a(L,t,c) < a(H,t c)=1.

Note that there cannot be two messages ¢, ¢’ that are in case (4) as one would message
would strictly dominate the other for any type.

In both case (1) and (2), the acceptance probability is the same for each type. So if
we have two messages in case (1) and (2), respectively, say c;, co, either one message
dominates the other or we can construct another equilibrium where all types that sent ¢y
now send ¢, and copy 6,. This new strategy would not change any player’s payoffs or
incentives because we have added an equal mass of A and R-types.

Let c3, ¢4 be two messages on path such that we are in case (3) and (4). Note that it
must always be that if p; ., (o; 0) > pi e, (e 6), then pe e, (a;0") > prey(; 0') forall @ >, 6.

Suppose there is a solution («, ) to the max-min problem where only test ¢ is chosen
and only one message in case (1) or (2) and one message in case (4). Let 8* be the largest
type sending a message in case (3) and ¢* a message in case (3) 6* is sending. Let ¢4 the
message in case (4).

There is another solution to the max-min problem (', ¢’) where the DM picks an ar-
bitrary test ¢’ and sets o/ (L, t',c) = o/ (H,t',c) = pro~(c; 0%) and o/ (2, ¢, ¢) = a(x,t,cy).
All types 6 >; 0* choose o’'(t,c|f) = o(t,c4]0). All types 0 <, 6* choose o'(t',c|f) =
Zd;@ o(t,[6).

For all message ¢’ # ¢4, wehave ), , u(0)o(t,c,0|0) = > ,cp 1(0)o(t, ', 0|6), thus,
we also have >, .. > s (0)a(t, ¢, 010) = > ..., D ger (0)o(t, ', 0]0). Therefore,
setting a constant acceptance probability after (¢, ¢) gives the same payoff to the DM than
under the original solution. For all types # <; 6* choosing (¢, c) gives weakly higher
payoffs and ¢’ is therefore also a solution to the max-min problem.

The payoffs from (¢, c,) under the original solution to the max-min problem are the
same as the payoffs from (¢, ¢) under the new solution for all players. Therefore, we have
constructed a new solution to the max-min problem where only one message is sent. The
example in Section 3 shows that there are cases where the DM can strictly benefit from a
menu.

Suppose that e(t,0) = {0} for all t € T. The result follows from Lemma 2. If a
Blackwell dominated test is chosen by an A-type, then we can introduce a message test
pair (¢, t) in the max-min problem that will make the A-type better off without making any

R-type better off. This deviation will create a new solution to max-min problem.
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B Mechanism and randomisation

So far we have restricted attention to menus of tests. But the DM could potentially use a
more elaborate mechanism to allocate tests to agents, possibly randomly. I define a mecha-
nism 7 : © — AT, a possibly random mapping from type report to distribution over tests.
A strategy for the DM remains a mapping from test allocation and signal realisation to an
acceptance decision, « : ' x X — [0, 1], and the agent’s strategy is a mapping from type
to type report. I assume that the DM cannot observe the type report but we can naturally
extend the mechanism 7 to allow for output messages in the spirit of Section 5. Standard
revelation principle arguments show that it is without loss of generality to restrict attention
to type reports.

The DM’s problem is now to maximise his expected payoff subject to incentive-compatibility
constraints. In the baseline model, the DM cannot commit to its strategy . Let BR(7) :=
{a: E,-[v(a,0)] > Ey . [v(a,0)], for all o/}, the set of best-replies when the mechanism
is 7. The DM’s problem is

max > (0 Z (t10)pe(cz0) = > (0 Z (t10)pe(cs; 0)

eA 0ER
s.t. Z (7(t|0) — 7(t]6"))pe(a; 8) > 0 for all , 6’
t

a € BR(T)

The first constraint is the incentive-compatibility constraint of type # deviating to 6’ and
the second constraint ensures that the DM best replies to the information revealed by the
output of the mechanism.?*

By using a mechanism, the agent can be randomly allocated to different tests without
being indifferent between them. On the other hand, when restricting attention to menus,
the agent has to be indifferent between tests if he randomises over tests. In the following
example (inspired by Glazer and Rubinstein, 2004), I show that access to a mechanism can

strictly improve the DM’s payoffs.

Example (Randomised allocation). Suppose there are six types © = {(6;,0,,03) : 0; =
0,1,1<60,4+60,+605 <2} and A = {(01,05,03) : 0, +65+03 = 2}. The DM has access to
three tests, each perfectly revealing one dimension: 7' = {1, 2, 3} with m;(z = 6,|0) = 1.

24This definition does not put constraints on off-path optimality, but because any strategy is a best-reply
to some beliefs, satisfying BR(7) will lead to a weak PBE.
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The prior p is uniform. At the optimum, the DM accepts when the signal is equal to 1. The
optimal mechanism 7 allocates each A-type with probability 1/2 to each test where their
dimension is equal to 1. Each R-type is allocated with probability 1/2 to the dimension
where it has value 1 and 1/4 in the other dimensions.

This mechanism accepts A-types with probability one and accepts R-types with proba-
bility 1/2. In particular, the mechanism randomises the allocation of R-types over tests they
are not indifferent between. If the DM could use only a menu, the R-types would always
choose the test that reveals their dimension equal to one. Thus any menus and strategies

that accept R-types with probability 1/2 must also accept A-types with probability 1/2.

I now show that the optimal mechanism can also be characterised by a max-min prob-
lem and the DM does not benefit from commitment.

To set up the characterisation of the optimal mechanism, lets : A — AT andm : R —
AA, and abusing notation, let « : T' x X — [0, 1] and

v(a, s,m) ZZS t6) [ V(s 6) — Zu m(0)6")p:(«; 0)] (7)

9eA teT 9'cR
_ZZ” s(t10)p(cv; 0) — Zu&’ Zmﬁw Zst!@ptaﬁ
0cA teT 0'er 0cA teT

The function s can be interpreted as A-types choosing a test, m as R-types choosing an
A-type to mimic, and « as the DM accepting the agent after a test and signal realisation.
The function v is then the DM’s expected payoffs from a distribution over tests induced by

the pair (s, m). I explain these objects in more detail in the discussion of Theorem 3.

Theorem 3. The value of an optimal mechanism is

V' = maxminv(a, s,m) ®)

For any (o, s) € argmax, ; ming v(a, §,m) and m € arg ming; maxs v(&, s,m), an

optimal mechanism is
e forf € A:7(t|6) = s(t]9)
s for0' € R:7(t|0") = ,cam(0]0')7(t]0)
* the DM'’s strategy is

Moreover, the DM does not benefit from committing to a.
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Theorem 3 provides another characterisation of the optimal mechanism in terms of a
max-min problem. As in Theorem 1, the that commitment has no value follows from the
max-min structure of the characterisation. To understand the structure of this max-min
problem better, consider the objective function v for a fixed a.. This can be interpreted as
a zero-sum game where where the maximiser, the A-types, chooses s : A — AT and the
minimiser, the R-types, chooses m : R — AA. The payoffs of a given A-type 6 choosing

test ¢ and a given R-type, ', choosing an A-type 0 can be expressed as:

for 6 € A choosing t, 1(0)pi(c; 0) — > pu(0')m(0]6')pi(c; 0')

0'er

for #' € R choosing 6, 1(6') Z (t10)py(cv; 0) Z w(0)s(t10)p:(a; 6)

t OeA,t

In the payoffs of the R-type, his strategy, the choice of 0, affects only the first part of the
payoffs. So the R-type is effectively trying to maximise his probability of being accepted.
On the other hand, the A-types maximise a modified version of their utility where they
maximise their probability of being accepted while being penalised every time a R-type
mimics them and is accepted. The A-types’ utility is thus modified to align it with the
DM'’s payoffs. The induced distribution over tests determines the optimal mechanism when
strategy « is used.

It is worth noting that given the max-min structure of the optimal mechanism, the DM
can also benefit from allocating agents to dominated tests under the same conditions as in
Section 4.1.

Proof. The designer’s problem is

max > (@ Z (t10)pe(c; 0) = (6 Z (t]0)pe(cv; 0)

fcA 0ER
s.t. Z 7(t|6) — 7(t|6"))pe(a; 8) > 0 for all 6, ¢’
t

a € BR(1)
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If the DM could commit over a strategy «, his problem would be

= max ) _u(f Z (t10)pe(a; 0) = > " (0 Z (t10)pi(cx; 0)

0eA PeR
st Y (7(t6) — 7(£]6))pi(cx; 6) > 0 for all 6, 6"
t

Step 1: Show that V(a) = max, min,, v(a, s, m) where v is defined in (7).
To show this claim, I am going to relax the mechanism design problem by restricting

attention to the IC constraints of R-types deviating to reporting an A-type:

()= 3 0(0) 3 (1) (050) = 3 0) 3 o)

feA 0ER

/ .
s.L. Z (t10)pi(cv; 0) > m% (9"9);7'(75|9)pt(0z,@), forall§ € R

The IC constraints are written to express that reporting type 6 for # € R is better than
any other reporting strategy over the A-types.

Now note that if an IC constraint is slack at the optimum, we could improve the DM’s
payoff by setting 7(¢|0) = > _, ., m*(0'|0)7(t|0") with

m* € arg max Z (0'16) ZT(HH')pt(a; 0).

mtl0) t

That would reduce the probability of type § € R of being accepted and would not change

any other constraints in the relaxed problem. Thus at the optimum,

D T(HO)pile:0) = max > m(@10) Y 7(t10)piles 6).
t 6'eA t

We can plug this expression in the payoffs to get

= a3 (6) 32 (100 (e6) = 3 (6) a5 m(0'16) 3 (el ()

m(-|0)

feA 0cR oA t
= maxmmZu Z (t10)pe(c; 0) — Zu Z (0'16) ZT(f!G’)pt(a; 9)
feA beR e t

Note that we can take out the max of the summation by the linearity of the expression

in m and it becomes a min because of the minus sign. This expression also corresponds to
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v as defined in (7).
It remains to show that the solution of this relaxed mechanism is indeed optimal. Take
s € arg maxming v(«, §,m) and m € argminv(«, s,m) and define the optimal mecha-

nism by
» 7(t|0) = s(t|f) ford € A
o T(t|0') =D peam(0]0")s(t]0) for ¢ € R

Note that an outcome of this mechanism gives payoff weakly higher than max;z min,; v(«, §, M)
as v(a, s,m) > ming v(a, s,m). Thus if it is incentive-compatible, it must be actually
equal to the upper bound max; ming, v(a, 3, m).

Note that all allocations are either allocations of A-types or convex combinations of the
A-types’ allocations thus it is enough to check that no type has any incentive to report any
A-type in the mechanism.

By definition of m,
v(a, s,m) > v(a, s,m’), forall m’
Therefore, for each R-type, ¢,

> m(010) > " r(t)pi(as ) = > 7(t]0)pi(; 0'), forany € A

0cA t t

For an A-type 6, consider the choice of choosing § such as 3(:|§) = s(-|#) for some

6 € A and the same otherwise. By definition of s,
v(a, s,m) = minv(q, s,m) > minv(a, §,m)
m

m

Rearranging,

u(0) Y (s(t10) = s(t10))pelas 0) > max Y (@) Y m(0"16') Y s(t0)pi(as ¢)

: 0CR 97cA :
— max Z (0" Z m(0"(6") Z 5(t10)pe(c; 0")
" oer 07cA ?

where the min is transformed in max because of the negative sign. Note that the LHS is

the IC constrain of type  deviating to type 6. The RHS is the difference in the probability
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of the R-types of being accepted when they choose a mimicking strategy 7. Note that the
only difference between s and s, from their point of view, is that there is weakly less choice
of allocations to mimic because we have 6 choosing the same allocation as 6. Therefore it
must be that the RHS is positive, which implies that the LHS is as well.

Step 2: Show that the DM does not benefit from commitment in the optimal mech-
anism.

Take (a, s) € arg max; ; ming v(a, 5,m) and m € argmin,; maxg v(&, s,m). The a
selected would be the optimal strategy when the DM can commit.

Note that because the order of maximisation does not matter, we also have o € arg maxj,

(0

Note that v is linear in & and m and thus by the minimax theorem,

,s,m), forall

(a, s,m’), forall m'’

=N
o
W
2
IN
<

Thus « best-replies to the optimal mechanism when the DM can commit and m is also a
best reply to («, s), thus satisfying the condition for characterising the equilibrium in Step
1. ]

C Additional max-min characterisation result

The goal of this section is to show how the max-min characterisation can be useful to show
that commitment has no value in environments where payoffs are not necessarily linear in
strategies or the strategy space is not convex. In particular, I show that we can still have
a similar result as in Theorem 1 if we restrict attention to DM strategies that take a cutoff
form.

I assume the following. The set of signals is X C R and any DM strategy is a member
of the set of cutoff strategies C' = {« : forallt € T, 2’ > z,a(x,t) > 0= a2’ t) = 1}.
Note that C' is a compact subset of RI¥! x RI”I. However, it is not convex.?® For the next
result, I will also assume that the testing technology is simple and consists of two tests,
T = {t,t'}.

Proposition 8. Suppose X C Rand T = {t,t'}. Suppose also that the DM is restricted to

using cutoff strategies.

2This cutoff strategy can be viewed as a subset of R for each test but then the payoffs are not linear or
concave in a.
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For any (o, o) € argmaxge ¢ 54 mingr v(a, 6, 6%), an optimal menu is

M = Upe 4 supp U(‘l‘g)-

Additionally, for any o € arg min;z maxgec v(a, 0?,6%), (o, 04, o) are the strategies
in the corresponding DM-preferred equilibrium.

Moreover, the DM does not benefit from commitment.

Proof. The proof follows identical lines as the proof of Theorem 1. The only difference is
that we cannot apply the minimax theorem in the zero-sum game between the R-types and
the DM. To prove the Nash Equilibrium of this game exists, I will use techniques that rely
on the monotonicity of the best-reply correspondences.

We endow the set C' with the following partial order:
a>cd & alz,t) <d(xt)and a(z,t') > o (x,t'), forall z € X.

Note that for any «, o € C, either a(x,t) > o/(x,t) forall z € X or a(z,t) < o/ (z,1)
for all z € X, i.e., in the test ¢, either the cutoff to accepting is lower in « or in «/.
We endow X7 = {o : R — AT} with the following partial order

o >ro & o(tlf) > o'(t]f), forall § € R.

Recall that 7" is binary so this guarantees that > is antisymmetric. It is also transitive and
reflexive and is therefore a partial order.

Both (C, >¢) and (X%, >R) are lattices.

Let BRr(a) and BRp(0) denote the best-reply correspondences of the R-types and
the DM. These correspondences are not empty because each player maximises a continuous
function over a compact domain.

Abusing notation, denote by v(«, o) with o € %, the payoffs of the DM when the
strategies of the A-types is fixed. Let v(«, o|t) be the payoffs in test ¢. I will now show that
v(a, o) satisfies the single-crossing property in (a; o) (Milgrom and Shannon, 1994): for
any 0’ >gpoand o >¢ o, v(a/,0) > (>)v(a,0) = v(d,d') > (>)v(a, o).

54



Let 0(0) = o'(t|0) — o(t|0) > 0. We want to show that

SO w(O)o' (E0)pr(a’s0) = > u(0)o’ (E10)p(a’; 6)
t tt’ HEA QER
>Zzu '(#|0)p;(c; 0) — Zu "(£10)pz(c; 0). (9)
1 €A 9cR
This holds because
SO w(®)a(il0)pi(e’;6) =Y u(6)o(t|0)pg(c; 6)
i= tt! 0cA 0ceR
>3 w(®)a(H0)pe(e; 0) = Y u(0)o (E|0)ps(as 0) (10)
et €A 0cR

Moreover, because o/ (z,t') > a(x,t') and o/ (x,t) < a(z,t), we have,

=" u0)8(O)pe(e':0) > =3 w(®)5(0)pi(as; ), (11)
0eR 0ER

> u(@)3(O)pe(a’:0) =Y u(6)3(0)p (a3 6). (12)

0cR 0eR

Summing (10), (11) and (12), we get inequality (9). If (10) holds strictly, then (9) holds
strictly as well.
Next, I show that v(a, o) is quasi-supermodular in «: v(,0) > (>)v(a A/, 0) =

vl Vo' o) > (>)v(d/,0). This follows directly from the fact that v(«, o) is linear in
9%v(a,0)
da(z,t)0a(z’ )
RIXI x RI7I and therefore v(c, o) is supermodular (Topkis, 1978). This implies it is quasi-

« and therefore = (. The order > is a variation of the usual order on
supermodular.

We now claim that —v(«, o) has the single-crossing property in (o; ) and is quasi-
supermodular in o. The proof of single-crossing property works exactly in the same way as
o (z,1) +
§(x,t) for t = t,¢' and follow the same steps. Quasi-supermodularity follows from the

for the single crossing property of v(a, o) in (o; o). We can set write a(x, 1) =

linearity of —v(«, o).

We have shown that the game satisfies the condition in Milgrom and Shannon (1994) for
equilibrium existence: (1) each player’s strategy space is a compact lattice, (2) the payoff
function is continuous in (o, o) and (3) the payoff function is quasi-supermodular in the

own strategy and satisfies the single crossing properties just shown. Thus an equilibrium
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exists.

A R)

In this zero-sum game, it implies that max,cc mingr v(a, 0, o A o).

= min,r max,ec (@, 0, 0

]

D Generalisations of Proposition 1 to Many Signals

In this section, I show how the results of Proposition 1 generalise naturally when the DM
(1) there is an order on types such that the dominant test satisfies MLRP and (2) the DM
uses an increasing strategy. Throughout this section, I assume that X C R.
A test t has an MLRP-order if there is an order >, on © such that § >,, ¢ if and only
if for any x > 2/,
i (2|0) - m(2']0") > 7 (2'10) - mi(x]0").

The DM’s strategy is increasing if v’ > = = a(2',t) > a(x,t) forallt € T. Let I be
the set of increasing strategies. A special type of increasing strategies are cutoff strategies:
forany t € T, a(z,t) > 0 = «a(a’,t) = 1 for any 2/ > z. Denote by C' the set of cutoff
strategies.

It is worth noting that in this environment, it might not be optimal to use the dominant
test as an increasing strategy might not be adapted to it. However, the optimal menu con-
tains the dominant test if the unconstrained optimal strategy associated with the dominant
test is in fact increasing.

The following result generalises the idea that conditions like (U-2) or (U-3) imply that
having a dominated test in the menu is optimal.

Denote by Fy(z|0) = ..., m(2'|0) the cdf of m(-]0).

Proposition 9. Ler X C R. Suppose there is a testt = t' for allt' € T and that t is
MLRP-ordered with order > ;. Suppose also that the DM must use an increasing strategy.
Take oo € argmaX ey > gea M(O)pe(a30) =D g p 11(0)pe(; 0) and let * = max{z :
az,t) = 0}.
If there is 0 and 0 € A with 0 <,; 0 such that

S uOF 0~ > p@F@E0) = F@) | Y u@) - > u®)],
0cA,0< 0 0cR,0< 0 0eA,0< 0 0cR,0< 0
U’

then there is an optimal menu containing some t' < t.
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If condition (U’) holds for all z € X, then it is always true that an optimal menu
containing some t' < t is optimal. Under binary signals, condition (U’) is a version of
condition ‘Imprecise at the bottom’ (U-2) in Proposition 1.

Note also that under the framework of Section 5 with effort and communication, all
strategies must be increasing for the agent to put effort. Therefore, condition (U’) and thus
(U-2) in the binary signal case imply that an optimal menu contains a dominated test.

The intuition for (U’) is the same as ‘Imprecise at the bottom’ (U-2). When using
a cutoff strategy, the probability of being acepted is p;(c;0) = 1 — F;(z*|), i.e., the
probability of sending a signal higher than the cutoff z*. Condition (U”) is thus also a form
of ‘imprecision at the bottom’: it states that the DM prefers types below 6 to be pooled and
all have distribution over signals 7,(-|@). If there is an A-type 6 such that § <,, ¢’ for all
0" € R, then condition (U’) is satisfied.

Proof. This follows from two observations. First, as argued in the discussion of Theorem 1,
as the set of increasing strategies [ is closed and convex, Theorem 1 also holds when
restricting attention to that class of strategies.
Suppose the DM only offers ¢ in the optimal menu and take o € arg max i Y pc 4 1(0)pe(o;0)—
Y ocr M(0)p(a;0). The set of step functions: a(x,t) = 1z > Z] for some T € X U
{min X — 1} is the set of extreme points of the set of increasing functions (see e.g., Lemma
2.7 in Borgers, 2015).2° Because the DM’s payoffs are linear in oo when offering only one
test, it is without loss of optimality to take the strategy associated as being a step function
with step at 2* as defined in the proposition.
Because condition (U’) is satisfied, there is 6 and 6 € A with 8 <,, 6 such that

Y wl) (Fi(e'0) = F('9) > > u(0) (F(x"|0) — Fi(z*|6)).

0cA0<0 0cR,0< 60

Take any ¢’ € T and set o/ (z,t') = 1 — Fy(z*|f) and &/(-,t) = a(-,t). Because types are
MLRP-ordered, we have that Fi(2*|0) > Fi(2*|0') for all ¢’ >, 6. Therefore, only types

%6Setting & = min X — 1 allows the DM to always accept.
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0 <, 0 prefer to deviate to ¢’. By condition (U’), we get

S w@pe(ei0) = > u(@)pe(a’;0)

0cA,0<p0 0cR,0< 0

> Y p@pla;0) = D p(@)pela;0).

0cA,0<)0 0eR,0< 0

Therefore, ' is a profitable deviation in the max-min problem or another maximum.
[

We can also combine the ideas of Proposition 2 and Proposition 1 to show that when
the dominant test ¢ is single-peaked with respect to >,,, i.e., there is 61,05 € A such
that A = {0 : 6; <)y 0 <y 65}, all equilibria where ¢ is used are payoff equivalent to
equilibria where only ¢ is used. This is the equivalent to showing that if condition (U-1)
is not satisfied, a singleton menu containing ¢ dominates any other menu containing ¢ and

other tests. Here we require the DM to use a cutoff strategy.

Proposition 10. Ler X C R. Suppose there is atestt = t' forallt' € T and thatallt' € T
are MLRP-ordered with order > ;. Suppose also that the DM must use a cutoff strategy.
If there is 61,05 € A such that A = {0 : 0, <); 0 <y 6>}, the menu {t} is optimal

among the menus containing t.

Proof. The proof proceeds similarly as the proof to show that if (U-1) is not satisfied, all
equilibria having ¢ on path have the same payoffs as having all types choosing ¢.

Let « be the strategy used by the DM in some equilibrium. As in the proof of Proposi-
tion 2, if £ = ¢’ and the DM uses a cutoff strategy, p;(a; 0) — py (a; 0) is single-crossing in 6.
Suppose there is some 6, 0" € A choosing ¢,t’ respectively. Then the set of types choosing
t is such that there is a cutoff type 8* where 0 <,; 0* = 0 € Aand 0 >,; 0* = 6 € R. Let
> s be the order such that § >, §' < 6'>,,0 . Then the strategy «(+, t) is decreasing with
respect to >, and all types choosing  have the property § € A, 0 € R = 0>,,0". If a(-, 1)
is not constant, the DM would be strictly better off using a strategy o/ (z,t) = o* € [0, 1]
for some constant o*, see e.g., Lemma 3.3 in Chi (2014) or the proof of Lemma 3 in Quah
and Strulovici (2009). Let ag(x,t) = 0 and oy (x,t) = 1 forall z € X. The strategy o'(-, )
is a convex combination of a4 (-, t) and (-, t), two cutoff strategies. By the linearity of
the preferences in «, these would be a profitable situation. Therefore, it must be that either

a(-,t) = 0 or = 1. In that case, either all types choose ¢ or none of them. O
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