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Abstract

We study multidimensional cheap talk with simple language and aligned preferences.

An expert communicates with a decision-maker using a score that aggregates a mul-

tidimensional state into a one-dimensional message. Even though the expert and the

decision-maker share the same payoffs, the use of simple language introduces strate-

gic frictions. As a result, equilibrium payoffs may be lower than those achievable

under commitment to a score. Additionally, under quadratic-loss utility, any equilib-

rium score must be linear in the state or discrete. Finally, for normally distributed

states, we characterize the set of equilibrium linear scores and show that it consists of

the ex-ante best and worst linear scores.
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Bart Lipman, Luca Onnis and Ran Spiegler for useful feedback and suggestions. We also thank Katinka
Holtsmark for early discussions on this project.
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Give me a one-handed economist.

Harry Truman

1 Introduction

Decision-makers often seek advice on complex issues. Policymakers consult experts about
the impact of new policies, while people follow nutritional guidance from professionals.
In principle, experts can write volumes on the many impacts of a new policy, and dietitians
are available for personalized eating plans. In practice though, advice has to be simple.
Experts summarize their findings in executive summaries. Most individuals rely on dietary
recommendations, such as “5 a day” or nutritional labels. In this study, we examine the
strategic incentives that arise when advice on complex issues has to be simple.

To isolate the effect of simple language, we focus on settings in which the expert and the
decision-maker share identical preferences. If the expert could use a language as rich as the
object described, revealing every relevant aspect of the object under consideration would
be both optimal and an equilibrium strategy. When instead experts communicate using
simple language, the nature of optimal and equilibrium communication is not immediately
clear.

We explore communication via simple language in a multidimensional cheap talk game
with aligned preferences. A sender observes a two-dimensional state of the world, then
sends a cheap-talk message to a receiver. The receiver takes a two-dimensional action to
minimize a quadratic loss function. Sender and receiver share the same payoffs. The model
is also equivalent to one where a sender addresses two different audiences with the same
message. For example, a movie critic using a single movie rating for a diverse readership.

We model simple language by requiring that equilibrium strategies map the state space to
a real number and satisfy a property we dub Intermediate Value Property. We call such
mappings scores. The Intermediate Value Property requires that small changes in the state
of the world only cause small changes in the score. The property captures the idea that
the score must represent the underlying physical reality of the state space. All continuous
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scores satisfy the property. If the score has a countable image, e.g., a five-star rating, a
marginal change in the state cannot make the score change by more than one star.

Both the image in R and the Intermediate Value Property are necessary for scores to cap-
ture a language “simpler” than the state. The Intermediate Value Property rules out bijec-
tions between R and R2 and therefore prevents the sender from fully revealing the state
(see Lemma 1). At the same time, our definition of score is flexible: it does not impose
monotonicity or other functional-form assumptions and accommodates both discrete and
continuous images of the mapping from states to messages.

We study Perfect Bayesian Equilibria where the sender maps states of the world into
messages according to a score. Note that to model simple languages, we propose an
equilibrium-selection criterion, not a restriction on the set of strategies. In other words,
once the state is observed, the sender can deviate to any message. Proposition 1 shows that
equilibrium scores always exist.

Our first result shows that communicating through scores can lead to welfare losses due to
strategic frictions: in some situations, no ex-ante optimal score is an equilibrium strategy.
This is possible because the sender can deviate from the optimal score to a strategy that is
not a score, once the receiver’s expectations are set. Whenever such a deviation is prof-
itable, commitment has value. In fact, the sender is sometimes better off being uninformed
about one dimension to reduce the set of deviations available.

We then characterize the shape of equilibrium scores when the state space is R2. We show
that strategic frictions impose qualitative restrictions on equilibrium scores. First, for any
prior distribution, equilibrium scores are either linear in the state or a discrete coarsening of
a linear score (Proposition 2). Second, a linear equilibrium score exists only if the expecta-
tion of the state conditional on a linear score is itself affine in the message (Proposition 3).
When this condition cannot be satisfied, equilibrium scores must be discrete. That is, the
sender needs to use a coarser language to be credible – for example a letter-based rating
instead of a continuous one.

For some prior distribution, equilibrium linear scores exist. When the state is normally dis-
tributed, Proposition 4 shows that there are exactly two equilibrium linear scores. One
score corresponds to the ex-ante worst linear score. In other words, a score may be
state-wise optimal yet ex-ante the worst linear one. The other equilibrium linear score cor-
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responds to the ex-ante best linear score. One score positively correlates the actions across
dimensions, and the other one negatively correlates them. The optimality of each score
depends on the correlation between the two dimensions of the state of the world: when the
dimensions are positively correlated, the ex-ante best linear score correlates the actions and
vice-versa. The key to Proposition 4 is the equivalence between the equilibrium scores and
the stationary points of the ex-ante payoff maximization problem over linear scores. These
stationary points correspond to the eigenvectors of a matrix that depends on the preference
parameters and the correlation structure. We can extend this equivalence between equi-
librium linear scores and the stationary points beyond two dimensions. In this case, some
stationary points could be neither the maximum nor the minimum.

1.1 Related Literature

We introduce a new notion of simple language in cheap-talk models by requiring the sender
to use a score, an aggregator of a multidimensional state, in equilibrium. Our definition of
score rules out bijections while being flexible enough to allow for discrete and continuous
scores. Closest to our paper is the literature studying cheap talk models with aligned pref-
erences and some form of language limitation.1 Jäger et al. (2011) study a similar model
where the sender is constrained to use a finite number of messages. They establish that
the ex-ante optimal strategy is an equilibrium and study the stability of the equilibrium.
In Blume and Board (2013) and Blume (2018) uncertainty about the language used can
impede communication. These three papers find that optimal strategies are equilibrium
strategies. Similarly, Lipman (2025) uses the fact that optimal strategies are equilibrium
strategies to show that there is always an equilibrium in pure strategy when preferences are
aligned in cheap-talk games with a possibly constrained set of messages. We take a differ-
ent approach and require simplicity to be an equilibrium property instead of a constraint on
the strategy space itself. In particular, the optimal scores are not necessarily equilibrium
strategies and therefore strategic frictions impose constraints on communication beyond
the properties of scores.2

1This literature, like us, looks at the consequences of language limitations, not its causes. On the latter
topic see Lipman (2003) and Lipman (2025).

2Other papers consider scores that aggregate a multidimensional variable in different settings. For exam-
ple, Ball (2025) and Bonatti and Cisternas (2020) study linear scores where sender and receiver have different
payoffs and the sender can manipulate the score input.
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We also relate to the literature on multidimensional cheap talk. This literature has shown
that multiple dimensions can be useful for information revelation, e.g., Battaglini (2002),
Chakraborty and Harbaugh (2007) and Chakraborty and Harbaugh (2010). In this strand of
the literature, the contribution closest to ours is Levy and Razin (2007), who show that cor-
relation across dimensions can limit communication by creating informational spillovers
across dimensions. Similar mechanisms are at play in our paper as the sender needs to bal-
ance how the score, a one dimensional object, reveals information across both dimensions.

Finally, there is a strand of the literature in information design where the amount of in-
formation transmitted is limited. In Gentzkow and Kamenica (2014), the limitation comes
from the cost of designing the experiment, while in Bloedel and Segal (2021) it comes
from the information-processing cost faced by the receiver. When considering optimal
scores, we impose a restriction directly on the shape of the information structure, by limit-
ing the sender to select among scores. In this way we are closer to Le Treust and Tomala
(2019) and Aybas and Turkel (2024), who consider exogenous constraints on the capacity
or cardinality of the message space.

2 Model

There are two players: a sender and a receiver. The sender has private information about
a two-dimensional state of the world, θ = (θ1, θ2) ∈ Θ ⊆ R2, whose distribution admits
a density function f if the state is infinite. Otherwise, f denotes the probability mass
function. We assume that the variance of θ is finite. When there is some ambiguity, we
use θ̃ to denote the random variable with realization θ. The receiver takes two actions
represented by a = (a1, a2) ∈ R2. Before the receiver takes action, the sender sends a
cheap-talk message m ∈ R.3 Sender and receiver share the same payoff function

u(a, θ) = −ϕ(a1 − θ1)
2 − (a2 − θ2)

2,

with ϕ > 0. Both players want each action to match the state. The parameter ϕ determines
the dimension along which the loss from mismatch is the largest. Let µ : Θ → R and

3Given our focus on the sender’s equilibrium strategies with image in R, we directly assume that the
message space is R. This restriction is without loss of generality as we could have a larger message space
and assign to any off-path message a belief associated with an on-path message.
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α : R → R2 denote pure strategies of the sender and the receiver. Also, for any m ∈ R
and i = 1, 2, let αi(m) denote the i−th element of α(m).

We are interested in a class of Perfect Bayesian Equilibria that we define in the next section.

An example of this setting is an expert giving advice to a government that needs to design
a multidimensional policy. For example, promoting a healthy diet among different subpop-
ulations, choosing tax levels for different groups or taking multiple investment decisions
in some technology.

Our model is also equivalent to a model with two receivers, each taking a one-dimensional
action. Each receiver minimizes a one-dimensional quadratic loss function and the sender
maximizes a weighted sum of the receivers’ payoffs. An example here could be an expert
directly promoting a healthy diet among different subpopulations.

2.1 Scores

A score s is a non-constant function from Θ to R that satisfies the following property:

Intermediate Value Property (IVP): for any θ, θ′ ∈ Θ such that s(θ) > s(θ′) and any
m ∈ [s(θ′), s(θ)] ∩ s(Θ), there is a θ′′ ∈ s−1(m) such that θ ∧ θ′ ≤ θ′′ ≤ θ ∨ θ′.4

We discuss this definition in more detail below.

The set of scores is denoted by S, and we refer to the typical realization of s as m. We say
that a score is optimal if it solves the following maximization problem:

max
s∈S

E[−ϕ(α1(s(θ))− θ1)
2 − (α2(s(θ))− θ2)

2]

s.t. α(m) = E[θ|m], ∀m ∈ s(Θ). (BR)

A score is thus optimal if it maximizes the expected payoff among scores, given that the
receiver best responds.

We say that a score s : Θ → R is an equilibrium score if there is a Perfect Bayesian
equilibrium (PBE) such that µ(θ) = s(θ) for all θ. A score is thus an equilibrium score if

4Here, ∧ is the component-wise minimum and ∨ is the component-wise maximum: θ ∧ θ′ =
(min{θ1, θ′1},min{θ2, θ′2}) and θ ∨ θ′ = (max{θ1, θ′1},max{θ2, θ′2}).
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and only if there is α that satisfies (BR) and ∀m,m′ ∈ s(Θ) and ∀θ ∈ Θ:

s(θ) = m ⇒ −ϕ(α1(m)− θ1)
2 − (α2(m)− θ2)

2 ≥ −ϕ(α1(m
′)− θ1)

2 − (α2(m
′)− θ2)

2.

(IC)

We note that an equilibrium score always exists.

Proposition 1. An equilibrium score exists.

The proof is in Section A. We show existence of an equilibrium score by showing that
there always exists a PBE with two messages in the support of the sender’s strategy.5 Be-
cause a non-constant strategy with two messages satisfies all the properties of a score, an
equilibrium score exists.

A score aggregates the two-dimensional state of the world into a one-dimensional object.
The Intermediate Value Property ensures that the score is a well-behaved aggregator of
the two-dimensional state of the world. Its economic interpretation is that it imposes a
weak form of continuity: small changes in the state correspond to small changes in the
score. We regard this property as a minimal requirement that the score must represent the
underlying physical reality of the state space. All continuous mappings from Θ to R satisfy
the property. For discrete mappings instead, the property requires that a minimal increment
in the state changes the score by at most one grade. On a mathematical level, the property
also rules out bijections between R2 and R, in line with our original motivation.6

Lemma 1. A score s : R2 → R is not a bijection.

Proof. If |s(Θ)| ≤ 2, then s cannot be a bijection. Take some messages m,m1,m2 ∈ s(Θ)

with m1 < m < m2. Take θ, θ1, θ2 such that s(θ) = m, s(θ1) = m1 and s(θ2) = m2.

We can draw a curve from θ1 to θ2 consisting of straight vertical and horizontal segments
such that this curve does not intersect with θ. At least one of these segments has end
points, denoted θ′ and θ′′, such that s(θ′) ≤ m ≤ s(θ′′). By the IVP, there must be θ′′′ on
that segment such that s(θ′′′) = m.

Figure 1 shows 4 different scores for the finite state space Θ = {0, 1}2; in the figure, dots
in the same area represent states to which the score assigns the same signal.

5Here we adapt the proof of existence in Jäger et al. (2011) to a potentially unbounded state space.
6Similarly, one can also show that the IVP rules out bijections for scores of the form s : {1, ..., n}2 → R.
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m = 3
m = 2
m = 1

Figure 1: Examples of scores for Θ = {0, 1}2

Here are some examples of scores for Θ = R2:

• s(θ) = β0 + β1θ1 + β2θ2;

• s(θ) =

1 if β1θ1 + β2θ2 ≥ c,

0 otherwise.
;

• s(θ) =
√

(θ1 − c1)2 + (θ2 − c2)2.

These examples show that scores can take many different forms. In particular, they can
be continuous functions or take discrete values, e.g., five-star ratings. Scores need not be
increasing or decreasing in any dimension. The last example shows a score that measures
the distance between the state and a point (c1, c2) on the plane. If the state θ represents
political positions along two dimensions, this score can be interpreted as a measure of
extremism where (c1, c2) would be the political center.
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3 Analysis

3.1 Value of Commitment

We argue that commitment has value, i.e., it can be the case that none of the optimal scores
are equilibrium strategies. We make our argument with an example. Let ϕ = 1, the state
takes values Θ = {0, 1}2 and, for simplicity, let f(θ) ̸= f(θ′) for any two states θ ̸= θ′. Let
scores sd and sD be as shown, respectively, in the top left and top right panels of Figure
1. Score sd assigns the same message to states (0, 1) and (1, 0) while assigning unique
messages to the other states. Score sD instead assigns the same message to states (0, 0)

and (1, 1) while assigning unique messages to the other states. Up to an inconsequential
relabeling of the messages, the optimal score is either sd or sD.

Remark 1. The optimal score is either sd or sD. Score sd is optimal if:

f(0, 0)f(1, 1)

f(0, 0) + f(1, 1)
≥ f(0, 1)f(1, 0)

f(0, 1) + f(0, 1)
; (1)

if the condition holds with a reversed inequality, score sD is optimal.

The proofs of this and the next remark are in Section B. The optimal score is an equilibrium
one if and only if the prior probabilities of the two states associated with the same message
are not too different.

Remark 2. Suppose the optimal score assigns the same signal to states θ and θ′. The
optimal score is an equilibrium score if and only if

f(θ)

f(θ′)
∈
[√

2− 1,
1√
2− 1

]
.

The intuition is as follows. Suppose condition (1) holds strictly, so that sd is the unique
optimal score. Score sd is shown on the left-hand side of Figure 2. Suppose also that
f(0,1)
f(1,0)

> 1√
2−1

, so that the posterior associated with m = 2 is “close” to (0, 1) and “far”
from (1, 0). In fact, the posterior is so far from (1, 0) that the score is not an equilibrium
strategy: if the receiver expects the sender to communicate according to the score, i.e.,
µ(θ) = sd(θ) for all θ, then the sender has a profitable deviation upon observing state
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(1, 0). The right-hand side of Figure 2 shows one such deviation, which involves message
µ(1, 0) = 3 instead of µ(1, 0) = 2.

m = 3
m = 2
m = 1

E[θ|m = 2]

Figure 2: Left: Strategy µ = sd. Right: Profitable deviation from µ = sd.

The deviation leads to a strategy that violates the IVP, as it “jumps” from µ(0, 0) = 1 to
µ(1, 0) = 3. This strategy is not a score. In general, optimal scores need not be equilib-
rium strategies precisely because deviations to strategies that are not scores are possible.
Relatedly, in some cases, the players are better off if the sender only observes one dimen-
sion of the state of the world (see Section F). The intuition here is that ignorance reduces
the set of potential deviations available to the sender. This is in contrast with the rest of
the literature that studies cheap talk models with aligned preferences (Jäger et al. (2011),
Blume and Board (2013) and Blume (2018)) where the constraints on communication are
on the message space directly and not on the properties of the equilibrium.

3.2 Infinite State Space

We characterize here equilibrium scores when the state space is R2. We show that equilib-
rium scores must satisfy specific properties that are imposed by the equilibrium conditions.
We first introduce three definitions.

A score s is linear if there exist β1 and β2 such that, for any θ ∈ R2,

s(θ) = β1θ1 + β2θ2.

A score s is coarsely linear if it has a discrete image M ⊆ Z and there exists β1 and β2

such that
s(θ) = m ⇔ cm−1 < β1θ1 + β2θ2 ≤ cm,
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with −∞ ≤ cm−1 < cm ≤ +∞ for any θ ∈ R2.

Essentially, a coarsely linear score can be constructed by taking a linear score and parti-
tioning its image into a countable number of intervals.

The scores s and s′ are equivalent if E[θ̃|s(θ)] = E[θ̃|s′(θ)] for all θ ∈ Θ.

We are now ready to state the result of this section.

Proposition 2. Suppose Θ = R2. Any equilibrium score is equivalent to a linear or

coarsely linear score.

The proof is in Section C. To understand how we get Proposition 2, observe that given
a belief about the sender’s strategy, the receiver takes an action α(m) = E[θ|m]. The
sender’s objective in state θ, given this belief, is to choose the message m′ that minimizes
the loss function:

min
m′

(
ϕ(θ1 − α1(m

′))2 + (θ2 − α2(m
′))2
)
.

As the sender minimizes a weighted Euclidean distance, in any equilibrium the set of states
indifferent between any two messages must be a line. Furthermore, the IVP requires that
such indifference lines do not cross. These observations imply that every equilibrium score
with a discrete image must be coarsely linear. Linear scores can be seen as a limit case of
coarsely linear scores. The rest of the proof shows that when the image of the score is not
discrete, linear scores are the only scores compatible with the equilibrium conditions.

With a loss function that is not quadratic, the equilibrium forces would impose other re-
strictions on the score’s functional form. In light of this observation, Proposition 2 should
not be interpreted as showing that linear strategies are special, but rather that strategic
frictions impose functional form restrictions on communication.

Finally, we argue that linear equilibrium scores are special cases.
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Proposition 3. For any β ∈ R2, let ei(m; β) = E[θi|m = β1θ1+β2θ2] for i = 1, 2. Assume

that for any β ∈ R2, ei(m; β) is differentiable in m.

• A linear score with βj = 0 for j = 1 or 2 is an equilibrium score only if E[θj|θi] is

constant in θi.

• A linear score with βi ̸= 0 for i = 1, 2 is an equilibrium score only if ei(m; β) is

affine in m for i = 1, 2.

Proposition 3 establishes that revealing one dimension is an equilibrium strategy only when
the expectation of one dimension conditional on the other is constant. It also establishes
that linear equilibrium scores can exist only if the expectation of the state conditional on
the score is itself affine in the message. When this condition is never met, all equilibrium
scores are coarsely linear. In these cases, the sender limits the information transmitted to
maintain credibility. Indeed, every coarsely linear score can be improved upon by a score
using more messages.

To understand the first result, suppose that the sender uses a score that only reveals one
dimension, say θ1. Upon observing θ1, the receiver will use the correlation between the two
dimensions to make some inferences about θ2. This reasoning from the receiver introduces
an incentive for the sender to lie about θ1 to potentially correct the inference on θ2. The
intuition is that an appropriately chosen marginal change in the score induces a marginal
loss of zero along the revealed dimension θ1 and a positive marginal benefit along the other
dimension. This information spillover is similar to the result in Levy and Razin (2007) who
show that misalignment in one dimension can hinder communication in another dimension
where receiver and sender have aligned preferences.

Using the score m = θ1 reveals that the state lies in the subspace {θ : θ1 = m} and the
first condition requires that the message does not change the expectation on the second
dimension. The second result generalizes this logic to revealing an arbitrary linear sub-
space. Using a linear score is equivalent to revealing the state lies in a linear subspace of
R2: {θ : m = β1θ1 + β2θ2}. The condition that the conditional expectation is affine in
the message is necessary for the message to not change the expectation on an appropriate
other dimension.
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3.3 Normally Distributed State

There are important classes of distributions — such as the normal distribution — for which
the conditional expectations given a linear score are affine. In this case, a linear equilib-
rium score may exist. We now characterize the linear scores when the state is normally
distributed.7

Let Sl = {s : R2 → R : s is linear}. We refer to a score as an ex-ante best linear score if
it solves the problem:

max
s∈Sl

E[−ϕ(α1(s(θ))− θ1)
2 − (α2(s(θ))− θ2)

2] s.t. α(m) = E[θ|m], ∀m ∈ s(Θ).

We instead refer to a score as an ex-ante worst linear score if it solves

min
s∈Sl

E[−ϕ(α1(s(θ))− θ1)
2 − (α2(s(θ))− θ2)

2] s.t. α(m) = E[θ|m], ∀m ∈ s(Θ).

Let

Σ =

(
σ2
1 σ12

σ12 σ2
2

)
be a covariance matrix and

Φ =

(
ϕ 0

0 1

)
.

We identify a linear score s(θ) = β′θ with the weights β = (β1, β2)
′.8

Proposition 4. Let θ ∼ N(0,Σ). The equilibrium linear scores are the eigenvectors of

ΦΣ. These are the ex-ante best and worst linear scores.

The proof is in Section E. Proposition 4 shows that when the state is normally distributed,
the best linear score is achievable in equilibrium. However, another linear equilibrium
exists, corresponding to the worst possible linear score. The key idea underlying the
proof is the following. A linear score β, with corresponding strategy α, is an equilibrium
score if the indifference curve of each type θ sending message m, {a ∈ R2 : u(a, θ) =

u(α(m), θ)}, is tangent to the curve {α(m) : m ∈ R}. We show that the linear scores

7The next result remains valid under elliptical distributions — a broader class of distributions that also
satisfy the linear conditional expectations property.

8We use the convention that when writing a vector as a matrix, it is a column vector.

13



β satisfying these tangency conditions are the eigenvectors of ΣΦ. These eigenvectors, in
turn, solve the first-order conditions of the ex-ante maximization problem.

The proof of Proposition 4 is general and can be extended to arbitrary dimensions of the
state and action space. When the dimension is larger than two, the set of equilibrium linear
scores coincides with the set of stationary points of the ex-ante maximization problem. In
the case of two dimensions, we can explicitly calculate the equilibrium linear scores. Note
that for any constant c ̸= 0, two linear scores β′ and β′′ such that β′ = cβ′′ induce the same
distributions over actions. Therefore, any linear score is determined by the ratio β1/β2, if
the ratio exists.

Corollary 1. Suppose σ12 ̸= 0. The equilibrium linear scores, β′ = (β′
1, β

′
2) and β′′ =

(β′′
1 , β

′′
2 ), are determined by the ratios

β′
1

β′
2

=
ϕσ2

1 − σ2
2 +

√
(ϕσ2

1 − σ2
2)

2 + 4ϕσ2
12

2σ12

̸= 0,

β′′
1

β′′
2

=
ϕσ2

1 − σ2
2 −

√
(ϕσ2

1 − σ2
2)

2 + 4ϕσ2
12

2σ12

̸= 0.

If σ12 = 0, then β′
2 = 0 and β′′

1 = 0, i.e., the equilibrium scores fully reveal one dimension.9

When the covariance σ12 is different than zero, one equilibrium ratio β1/β2 is positive and
the other one is negative. In the score with a positive ratio, a higher message is associated
with a higher state: E[θi|m] is increasing in m for i = 1, 2.10 If, for instance, the score rates
a movie by considering its aesthetic quality, θ1, and entertainment value, θ2, then a higher
rating indicates that the movie has a higher expected quality in both dimensions. Instead,
the score with a negative ratio can be interpreted as a relative measure: a higher message
is associated with a higher expected value in one dimension, but lower in the other.

When the correlation between the two dimensions is positive (σ12 > 0), the optimal linear
score satisfies β1/β2 > 0, which corresponds to inducing positively correlated actions by
the receiver. When the correlation is negative, the best linear score is such that β1/β2 <

0, while the worst is such that β1/β2 > 0. Note that the worst score can be a natural
9The proof of the corollary is immediate, therefore omitted.

10This statement is true in equilibrium but does not hold for all β. For example, suppose there is negative
correlation between the two dimensions, σ12 < 0, and the weight on the first dimension is much higher than
on the second, β1 ≫ β2 > 0. In this case, a higher message will still be indicative of a high θ1 which in turn
implies a low θ2.
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candidate for an equilibrium score. For example, if movie critics use a rating system where
a higher rating indicates higher aesthetic or entertainment value but these two dimensions
are negatively correlated, then the equilibrium score has poor welfare properties.

Finally, note that as in Proposition 3, it is an equilibrium to reveal only one dimension only
if the two dimensions are uncorrelated. In this case, the best linear score depends on the
loss from mismatch ϕ and the variance of each dimension.

4 Conclusion

We model a cheap-talk game with aligned preferences where the sender is constrained
to use a score in equilibrium. We show that this restriction introduces strategic frictions
despite the aligned preferences. These frictions can create a wedge between optimal and
equilibrium scores. They also put structure on the shape of equilibrium scores.

The multidimensionality of our model plays a key role in our results. In particular, if the
state were one-dimensional, any optimal score would be an equilibrium strategy. In a one-
dimensional model, the score can be defined in multiple ways. Let Θ ⊆ R and let the
sender send messages in M ⊆ R. A score is a function s that satisfies

1. s : Θ → M and

2. s satisfies IVP.

If either M = R or M = {1, ..., n} for some n ∈ N, then any optimal score is an equi-
librium strategy. If M = R, full revelation is possible so the optimal score is trivially an
equilibrium. If M = {1, ..., n}, the result follows from the fact that for any given score
and belief associated with it, the most profitable deviation is also a score. Therefore, if
this deviation is profitable, then this score should have been optimal. This is the crucial
difference with the two-dimensional case where a profitable deviation could be a strategy
that is not a score.
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A Proof of Proposition 1

We first establish that there always exists an equilibrium with two messages.

Lemma 2. There exists a Perfect Bayesian Equilibrium in which the sender chooses a

strategy µ : Θ → {1, 2}.

Proof. As a first step, we establish that the function

v(α1, α2) =

∫
Θ

max{u(α1, θ), u(α2, θ)}dF

is continuous. To show this, we apply the dominated convergence theorem.

Take two converging sequences in R2, (α1,n, α2,n) → (α1, α2). Observe that

|max{u(α1,n, θ), u(α2,n, θ)}| ≤ ϕ(α1,n
1 − θ1)

2 + (α1,n
2 − θ2)

2.

For any converging sequence in R2, αn → α, the function

ϕ(αn
1 − θ1)

2 + (αn
2 − θ2)

2 = (ϕθ21 + θ22)− 2(ϕθ1α
n
1 + θ2α

n
2 ) + ϕ(αn

1 )
2 + (αn

2 )
2

is dominated by an integrable function. This is the case, because the sequence (αn) con-
verges, hence it is bounded and ϕ(αn

1 )
2 + (αn

2 )
2 ≤ M for some M > 0. Similarly, by the

Cauchy-Schwarz inequality, |ϕθ1αn
1 + θ2α

n
2 | ≤

√
M(θ21 + θ22). Therefore,

|max{u(α1,n, θ), u(α2,n, θ)}| ≤ ϕ(α1,n
1 −θ1)

2+(α1,n
2 −θ2)

2 ≤ (ϕθ21+θ22)+2
√
M(θ21+θ22)+M,

for some M > 0. Because the variance of θ is finite, the dominating function is integrable.

It is also clear that

max{u(α1,n, θ), u(α2,n, θ)} → max{u(α1, θ), u(α2, θ)}, for each θ.

Therefore by the dominated convergence theorem,∫
Θ

max{u(α1,n, θ), u(α2,n, θ)}dF →
∫
Θ

max{u(α1, θ), u(α2, θ)}dF,
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and the function v(α1, α2) is continuous.

As a second step, we establish that the following maximization problem has a solution:

max
α1,α2∈R2

v(α1, α2) (2)

The function v(α1, α2) is bounded above by 0 and therefore a supremum exists, say v∗.
Moreover, setting α1 = α2 = E[θ] guarantees a payoff of −ϕVar[θ1]−Var[θ2] and therefore
v∗ ≥ −ϕVar[θ1]− Var[θ2].

If v∗ = −ϕVar[θ1] − Var[θ2], then the supremum is attained by α1 = α2 = E[θ] and
therefore a maximum exists.

Suppose instead that v∗ > −ϕVar[θ1] − Var[θ2]. Let (α1,n, α2,n) be a sequence such that
v(α1,n, α2,n) → v∗. We want to show that the sequence (α1,n, α2,n) is bounded.

Suppose it is not. If ∥αk,n∥ → ∞, then u(αk,n, θ) → −∞ for each θ.

If ∥αk,n∥ → ∞ for both k = 1, 2, then max{u(α1,n, θ), u(α2,n, θ)} → −∞ and therefore
v(α1,n, α2,n) → −∞ and thus does not converge to v∗.

If ∥αk,n∥ → ∞ for only one k = 1, 2, then α−k,n is bounded and admits a convergent
subsequence to α−k. Taking such subsequence, we get max{u(αk,n, θ), u(α−k,n, θ)} →
u(α−k, θ) for each θ. Using the dominated convergence theorem in a similar way as above,
we get

v(αk,n, α−k,n) →
∫
Θ

u(α−k, θ)dF ≤ −ϕVar[θ1]− Var[θ2].

But the supremum v∗ > ϕVar[θ1] + Var[θ2], a contradiction.

Therefore, the sequence (α1,n, α2,n) is bounded and admits a convergent subsequence. By
continuity, a maximum then exists.

To conclude the proof, note that the maximization problem (2) gives the Perfect Bayesian
Equilibrium strategies of the common interest game where the sender chooses a strategy
µ : Θ → {1, 2} and the receiver chooses (α1, α2) ∈ R2 × R2 to maximize

max
µ,α

∫
Θ

1[µ(θ) = 1]u(α1, θ) + 1[µ(θ) = 2]u(α2, θ)dF. (3)
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Proposition 1 is a corollary of Lemma 2.

Proof of Proposition 1. Note first that α1 = α2 = E[θ] is not a solution of the maximiza-
tion problem (3), as any arbitrary partition of Θ and the best-reply to it would give strictly
higher payoffs. This means that the solution to (3) is a non-constant µ. Moreover, the strat-
egy µ : Θ → {1, 2} trivially satisfies the IVP. Therefore, an equilibrium score exists.

B Proof of Remark 1 and Remark 2

Let s1 denote the score that assigns a signal to (0, 0) and (0, 1) and another signal to
(1, 0) and (1, 1). Let s2 denote the score that assigns a signal to (0, 0) and (1, 0) and
another signal to (0, 1) and (1, 1). It is immediate that the optimal score belongs to the set
{s1, s2, sD, sd}. Let the payoffs associated with sD, sd, s1 and s2 be respectively, uD, ud,
u1 and u2 so that:

uD := −2g(f(0, 0), f(1, 1));

ud := −2g(f(1, 0), f(0, 1));

u1 := −g(f(0, 0), f(0, 1))− g(f(1, 0), f(1, 1));

u2 := −g(f(0, 0), f(1, 0))− g(f(0, 1), f(1, 1)),

where g(x, y) := xy
x+y

.

Lemma 3. If f(0, 1) > f(0, 0), then score s2 is not optimal.

Proof. Suppose first that f(1, 0) > f(1, 1). Simple algebra gives:

u2 < uD ⇔

g(f(0, 0), f(1, 0))− g(f(0, 0), f(1, 1)) > g(f(0, 0), f(1, 1))− g(f(0, 1), f(1, 1)).

As gx > 0, then f(1, 0) > f(1, 1) ensures that the left side of the last inequality is positive:
at the same time, f(0, 1) > f(0, 0) ensures that the right side is non-positive. We conclude
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that the last inequality holds and indeed u2 < uD. So for f(1, 0) > f(1, 1), score s2 is not
optimal.

Suppose now that f(1, 0) < f(1, 1). We proceed by contradiction. Suppose that u2 ≥
max{uD, ud}. Then

g(f(0, 0), f(1, 0)) + g(f(0, 1), f(1, 1)) ≤ 2g(f(1, 0), f(0, 1)), and

g(f(0, 0), f(1, 0)) + g(f(0, 1), f(1, 1)) ≤ 2g(f(0, 0), f(1, 1)).

These two inequalities imply that the sum of the right sides must be larger than the sum of
the left sides:

2g(f(0, 0), f(1, 0)) + 2g(f(0, 1), f(1, 1)) ≤ 2g(f(1, 0), f(0, 1)) + 2g(f(0, 0), f(1, 1)) ⇔

g(f(0, 1), f(1, 1))− g(f(0, 0), f(1, 1)) ≤ g(f(1, 0), f(0, 1))− g(f(0, 0), f(1, 0)).

As gxy(·) > 0, then f(0, 1) > f(0, 0) and f(1, 0) < f(1, 1) together imply that the last
inequality is violated. This contradiction implies that u2 < max{uD, ud}. Hence, for
f(1, 0) < f(1, 1), score s2 is not optimal. As f(1, 0) ̸= f(1, 1) by assumption, the lemma
follows.

Proof of Remark 1. Lemma 3 establishes that if f(0, 1) > f(0, 0), then score s2 is not
optimal. The same arguments can be used to show that also for f(0, 1) < f(0, 0) score
s2 is not optimal. As f(0, 1) ̸= f(0, 0) by assumption, we conclude that score s2 cannot
be optimal. The proof that s1 cannot be optimal follows the same steps and is omitted.
We conclude that the optimal score is either sD or sd. The last part of the remark is
immediate.

Proof of Remark 2. Suppose parameters are such that sd is optimal (the argument is iden-
tical if sD is optimal). Consider a PBE such that µ(θ) = sd. In such a PBE, µ(0, 0) = 1,
µ(0, 1) = µ(1, 0) = 2 and µ(1, 1) = 3; α(1) = (0, 0), α(2) = ( f(1,0)

f(1,0)+f(0,1)
, f(0,1)
f(1,0)+f(0,1)

)
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and α(3) = (1, 1). Note that u(α(3), (1, 0)) = u(α(1), (1, 0)) = −1 hence

u(α(2), (1, 0)) ≥ u(α(1), (1, 0)) ⇔ u(α(2), (1, 0)) ≥ u(α(3), (1, 0)) ⇔ f(1, 0)

f(0, 1)
≥

√
2−1,

while

u(α(2), (0, 1)) ≥ u(α(1), (0, 1)) ⇔ u(α(2), (0, 1)) ≥ u(α(3), (0, 1)) ⇔ f(1, 0)

f(0, 1)
≤ 1√

2− 1
.

A necessary condition for sd to be an equilibrium strategy is therefore that

f(1, 0)

f(0, 1)
∈
[√

2− 1,
1√
2− 1

]
.

To conclude the proof it is sufficient to note that (a) this condition is also sufficient, as
deviations for the sender are unprofitable upon observing some θ ∈ {(0, 0), (1, 1)} and (b)

f(1, 0)

f(0, 1)
∈
[√

2− 1,
1√
2− 1

]
⇔ f(0, 1)

f(1, 0)
∈
[√

2− 1,
1√
2− 1

]

C Proof of Proposition 2

For a score s, let α(m) = E[θ|m], let M be the image of s and α(M) the image of α(·).
Let Θ(a) = {θ : α(s(θ)) = a}. For any two points, x, y ∈ R2, with a slight abuse of
notation, let [x, y] = conv {x, y}, (x, y) = [x, y] \ {x, y} and [x, y) = [x, y] \ {y}. Finally,
let ℓ(x, y) be the line connecting the points x, y.

The following lemma will be used throughout the proof.

Lemma 4. Let a, a′ ∈ R2. If u(a, θ) ≥ u(a′, θ), then u(a, θ′) > u(a′, θ′) for all θ′ ∈ [a, θ).

Proof. First assume that a′ /∈ ℓ(a, θ). Take θ′ ∈ [a, θ). Note that

− u(a, θ) ≤ −u(θ, a′)

⇒
√

−u(θ, a) ≤
√

−u(θ, a′) <
√
−u(θ, θ′) +

√
−u(θ′, a′), (4)
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where the last inequality holds by the triangle inequality and is strict because θ, θ′ and a′

are not collinear. Note also that√
−u(θ′, θ) +

√
−u(a, θ′) =

√
−u(a, θ) <

√
−u(θ, θ′) +

√
−u(θ′, a′)

⇒ −u(a, θ′) < −u(a′, θ′)

⇔ u(a, θ′) > u(a′, θ′),

where the equality holds as a, θ and θ′ are collinear, and the first inequality follows from
(4).

If instead a′ ∈ ℓ(a, θ′), we must have a′ /∈ (a, θ], otherwise u(a, θ) < u(a′, θ). But then,
either a ∈ (a′, θ′) or θ ∈ (θ′, a′). In both cases, u(a, θ′) > u(a′, θ′).

We first consider the case in which all points in α(M) are isolated.

Lemma 5. If all points in α(M) are isolated, then s(θ) is equivalent to a coarsely linear

score.

Proof. For any two a, a′ ∈ α(M), let Θ≥(a, a′) := {θ : u(a, θ) ≥ u(a′, θ)}. This set is a
half-space:

u(θ, a) ≥ u(θ, a′) ⇔ −2θ1a1ϕ+ a21ϕ− 2θ2a2 + a22 ≥ −2θ1a
′
1ϕ+ a′21 ϕ− 2θ2a

′
2 + a′22 .

Similarly, let Θ=(a, a′) := {θ : u(a, θ) = u(a′, θ)}. This set is a line.

If |α(M)| = 2, the set Θ=(a, a′) determines the half-space defining a coarsely linear score.

Suppose there are three points a1, a2, a3 ∈ α(M) and mi ∈ α−1(ai) for i = 1, 2, 3 such
that (i) m1 < m2 < m3 and (ii) for any action a′ ∈ α(M)\{a1, a2, a3}, every m ∈ α−1(a′)

satisfies m > m3 or m < m1.

Suppose that Θ=(a1, a2) and Θ=(a2, a3) are not parallel. Then Θ(a2) ⊆ Θ≥(a2, a1) ∩
Θ≥(a2, a3) and the set Θ≥(a2, a1) ∩ Θ≥(a2, a3) is a polyhedron with an extreme point at
Θ=(a2, a1) ∩Θ=(a2, a3).

Clearly {a1, a3} ∩ Θ≥(a2, a1) ∩ Θ≥(a2, a3) = ∅. Moreover, we can draw a curve from a1
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to a3 in Θ \ (Θ≥(a2, a1) ∩ Θ≥(a2, a3)) consisting of straight vertical and horizontal lines.
By the IVP, there must be θ′ on that curve such that s(θ′) = m2, a contradiction.

We consider next the case in which not all points in α(M) are isolated.

Lemma 6. Let a be a limit point in α(M). Then intΘ(a) = ∅.

Proof. To establish that intΘ(a) = ∅, we proceed by contradiction. Suppose intΘ(a) ̸= ∅
and let θ ∈ intΘ(a). Hence u(a, θ) ≥ u(a′, θ) for all a′ ∈ α(M). Let a′′ be such that
u(a, θ) = u(a′′, θ). Because θ ∈ intΘ(a), there is ϵ > 0, such that for all θ′ ∈ Bϵ(θ),
θ ∈ Θ(a). Therefore, (θ, a′′] ∩ Bϵ(θ) is not empty. But by Lemma 4, θ′ ∈ (θ, a′′] implies
u(a′′, θ′) > u(a, θ′), contradicting θ′ ∈ Θ(a). Hence u(a, θ) > u(a′, θ) for all a′ ∈
α(M) \ {a}.

Now we argue that intΘ(a) is convex. Let θ, θ′ ∈ intΘ(a) and θ′′ ∈ [θ, θ′]. First observe
that

u(θ, a) > u(θ, a′) ⇔ −2θ1a1ϕ+ a21ϕ− 2θ2a2 + a22 > −2θ1a
′
1ϕ+ a′21 ϕ− 2θ2a

′
2 + a′22 .

(5)

The inequality is preserved under convex combinations, so u(a, θ′′) > u(a′, θ′′) for all
a′ ∈ α(M) \ {a}, and thus θ′′ ∈ Θ(a).

We show next that θ′′ ∈ intΘ(a). Take ϵ > 0, such that Bϵ(θ) ⊂ intΘ(a). If θ′′ ∈ Bϵ(θ),
we are done. Suppose θ′′ /∈ Bϵ(θ). Take two points θ1, θ2 ∈ Bϵ(θ) such that θ′′ /∈ [θi, θ′]

for i = 1, 2, and θ ∈ (θ1, θ2). This implies that θ1, θ2 and θ′ are not collinear.11 In that
case, the convex hull conv{θ1, θ2, θ′} ⊆ Θ(a) has a non-empty interior and contains θ′′.
Since θ′′ is not on the boundary of conv{θ1, θ2, θ′}, it is in its interior. There exists thus an
η > 0 such that Bη(θ

′′) ⊆ conv{θ1, θ2, θ′} ⊆ Θ(a). Therefore, θ′′ ∈ intΘ(a), and intΘ(a)

is convex.

If intΘ(a) is not empty and convex, then the boundary of Θ(a) has measure zero in R2 (see
e.g., Lang, 1986). Moreover, since E[θ|s(θ) = m] = a for all m ∈ {m′ ∈ M : α(m′) =

11For example, two points whose segment [θ1, θ2] ⊆ Bϵ(θ) is perpendicular to [θ, θ′] satisfy these condi-
tions.
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a}, we have
E[θ|θ ∈ Θ(a)] = a.

Therefore,
E[θ|θ ∈ Θ(a)] = E[θ|θ ∈ intΘ(a)] = a,

which implies a ∈ intΘ(a). But then, because a is a limit point of α(M), it means that
intΘ(a) intersects with α(M) at a point different than a, i.e., there is a point a′ ∈ α(M)

and associated message m′ with α(m′) = a′ such that 0 > u(a′, a) ≥ u(a′, α(m′)) = 0. A
contradiction. Hence, intΘ(a) = ∅.

Lemma 7. Let a be a limit point in α(M \ {infM, supM}). Then Θ(a) = ℓ(θ, θ′) for

some θ and θ′. Moreover, for all limit points a in α(M \ {infM, supM}), the lines Θ(a)

are parallel.

Proof. First, we show that there are θ and θ′ such that Θ(a) ⊆ ℓ(θ, θ′).

From the proof of Lemma 1, |Θ(a)| > 1 and therefore Θ(a) ̸= {a}.

Note that a cannot be an extreme point of convΘ(a) as E[θ|θ ∈ Θ(a)] = a and Θ(a) ̸=
{a}. This means that there exist θ, θ′ ∈ Θ(a) such that a ∈ [θ, θ′].

By Lemma 4, we can assume that for θ† ∈ {θ, θ′} we have u(θ†, a) > u(θ†, a′) for all
a′ ∈ α(M) \ {a}. Otherwise, we can just take a smaller interval contained in [θ, θ′].

Suppose there is θ′′ /∈ ℓ(θ, θ′) such that θ′′ ∈ Θ(a). Again, we can take θ′′ such that
u(θ′′, a) > u(θ′′, a′) for all a′ ∈ α(M) \ {a}. As argued in the proof of Lemma 6, the set
conv{θ, θ′, θ′′} ⊆ Θ(a). Since these points are not aligned, conv{θ, θ′, θ′′} has a non-empty
interior and therefore intΘ(a) has a non-empty interior. A contradiction.

To prove that Θ(a) = ℓ(θ, θ′), it is then enough to show that the set Θ(a) is unbounded in
both directions. To see this, take some θ ∈ Θ(a) and let m = s(θ). We can repeat the same
argument as in Lemma 1. Let m1 and m2 satisfy m1 < m < m2 and pick θ1 and θ2 such
that s(θ1) = m1 and s(θ2) = m2.

If Θ(a) is bounded in one direction, we can find a curve consisting of straight horizontal
and vertical lines such that this curve does not intersect with Θ(a). By the IVP, there must
be θ′ on that curve such that s(θ′) = m and therefore θ′ ∈ Θ(a), a contradiction. Therefore,
Θ(a) = ℓ(θ, θ′).
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Let a and a′ be limit points of α(M \ {infM, supM}) such that a ̸= a′. Because Θ(a) ∩
Θ(a′) = ∅, the lines Θ(a) and Θ(a′) must be parallel.

Let AI be the set of isolated points in α(M) and AL be the set of limit points in α(M).
Denote by ℓs(a) the line that goes through a and has the same slope as Θ(a′) for some
a′ ∈ AL.

Lemma 8. If there are some limit points in α(M), then all points in α(M) are limit points.

Proof. Let Θ† = ∪a∈clAL
Θ(a) = ∪a∈clAL

ℓs(a).

Take a ∈ argmaxa′∈AI
supθ∈Θ† u(a′, θ) and θ† ∈ argmaxθ∈Θ† u(a, θ). The points a and

θ† are the two points in AI and Θ† with minimal (weighted) distance between the two.
Moreover, this distance is bounded away from zero either by the definition of isolated
points if θ† ∈ AL or by the optimality of generating an action in AL for states arbitrarily
close to θ† if θ† /∈ AL.

Note that θ† is on the boundary of Θ†, otherwise there is another point in Θ† closer to a.
Take ã ∈ clAL such that θ† ∈ ℓs(ã). Because the Θ† is a union of lines, if θ† ∈ ℓs(ã)

is on the boundary of Θ†, then ℓs(ã) is on the boundary of Θ†. We can therefore find a
sequence θn /∈ Θ† with θn → ã. By definition of isolated points, there is ϵ > 0 such that
u(a, ã) < −ϵ for all a ∈ AI . But then for n large enough, θn prefers to induce an action in
AL, a contradiction.

Lemma 9. If there are some limit points in α(M), any equilibrium score is equivalent to

a linear score.

Proof. By Lemma 8, if there are some limit points in α(M), then all points in α(M) are
limit points.

If infM /∈ M and supM /∈ M , then by Lemma 7, the score is equivalent to an equilibrium
score.

To conclude the proof, we will show that infM /∈ M and supM /∈ M . Suppose it is not
the case and that m = minM exists. By Lemma 8, because there are some limit points in
α(M), α(m) is a limit point of α(M). Therefore, there is a neighborhood of α(m), denote
it Θ†, such that for all θ ∈ Θ†, it is the case that supa∈AL

u(θ, a) > supa∈AI
u(θ, a) and for
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all a ∈ Θ† ∩ α(M), it is the case that a ∈ AL. That is, types in Θ† are closer to points in
AL than to points in AI .

Take a point in θ ∈ ℓs(α(m)) ∩ Θ†. It cannot be that α(s(θ)) ∈ AI by definition of Θ†. It
also cannot be that α(s(θ)) ∈ AL \ {α(m)} as θ ∈ ℓs(α(m)). Therefore, α(s(θ)) = α(m)

and there is more than one point in Θ(α(m)). By a similar argument as above, it must be
that Θ(α(m)) ⊆ ℓs(α(m)).

Let Θ+ and Θ− denote the two open half-spaces defined by the line ℓs(α(m)). Suppose
a+ ∈ Θ+ and a− ∈ Θ− such that a+, a− ∈ Θ† ∩ α(M), i.e., there are actions played in
equilibrium in AL that are on both sides of ℓs(α(m)). Note that ℓs(a−) ⊂ Θ−.

Suppose without loss of generality that m+ = s(a+) > m− = s(a−). By definition,
m− > m. Take two points θ+ ∈ ℓs(a

+), θm ∈ Θ(α(m)) such that θ+ > θm or θ+ < θm.
We can draw a curve between θ+ and θm that is entirely in Θ+ (except at θm) that consists
only of straight horizontal and vertical lines. By IVP, there must be θ′ on that curve such
that s(θ′) = m−. But θ′ ∈ Θ+ and /∈ ℓs(a

−) = Θ(a−), a contradiction.

Therefore all θ ∈ Θ† ∩ α(M) are in the same half-space, say Θ−. But types in Θ+ ∩ Θ†

should prefer sending messages that induce a ∈ AL, contradicting that Θ(a) ⊆ ℓs(a).

Proof of Proposition 2. Proposition 2 follows from Lemmas 5 and 9.

D Proof of Proposition 3

Let s(θ) = β1θ1 + β2θ2 be a linear score.

Assume first that βj = 0 for j = 1 or 2. Without loss we can set βi = 1 and therefore
the message perfectly reveals the state θi. Let ej(θi) = E[θj|θi] and assume that it is not
constant in θi.

Assume i = 1. In equilibrium we must have for each θ that it is optimal to play m = θ1,
i.e.,

θ1 ∈ argmax
m

−ϕ(θ1 −m)2 − (θ2 − e2(m))2.
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Taking FOC, we obtain

ϕ(θ1 −m) + e′2(m)(θ2 − e2(m)).

This expression is equal to zero at m = θ1 if either e′2(θ1) = 0 or θ2 = e2(θ1). Since the
FOCs must hold for all θ2, we must have e′2(θ1) = 0.

The reasoning for i = 2 is the same.

Now assume that βi ̸= 0 for i = 1, 2. Let ei(m) = E[θi|m].

We must show that if for all θ,

β1θ1 + β2θ2 ∈ argmax
m

−ϕ(θ1 − e1(m))2 − (θ2 − e2(m))2, (6)

then ei(m) = aim+ bi for some ai, bi ∈ R.

If (6) holds, then for m = β1θ1 + β2θ2, we have

ϕe′1(m)(θ1 − e1(m)) + e′2(m)(θ2 − e2(m)) = 0

⇔ ϕe′1(m)θ1 + e′2(m)θ2 = ϕe′1(m)e1(m) + e′2(m)e2(m) (7)

First, we show that there is a function λ : R → R such that e′1(m) = λ(m)β1/ϕ and
e′2(m) = λ(m)β2. To see this, fix a message m and write the derivative conditional expec-
tations as e′1(m) = λ1β1/ϕ and e′2(m) = λ2β2. Take θ, θ′ such that s(θ) = s(θ′) = m.
Note that given βi ̸= 0, we have θ1 ̸= θ′1. Since the RHS of (7) does not depend on the
state, we get

ϕ
λ1

ϕ
β1θ1 + λ2β2θ2 = ϕ

λ1

ϕ
β1θ

′
1 + λ2β2θ

′
2.

If λ2 = 0, we must also have λ1 = 0 as θ1 ̸= θ′1. If λ2 ̸= 0, we can rearrange the expression
to obtain

β1θ1 + β2θ2 + (
λ1

λ2

− 1)θ1β1 = β1θ
′
1 + β2θ

′
2 + (

λ1

λ2

− 1)θ′1β1

⇔ (
λ1

λ2

− 1)θ1β1 = (
λ1

λ2

− 1)θ′1β1,

where we have used on the last line that s(θ) = s(θ′) = m. Again using that θ1 ̸= θ′1, we
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obtain λ1 = λ2.

Plugging the functional form of e′(m) in the FOC again, we obtain,

λ(m)β1θ1+λ(m)β2θ2 = λ(m)β1e1(m)+λ(m)β2e2(m) ⇔ β1θ1+β2θ2 = β1e1(m)+β2e2(m).

Since β1θ1 + β2θ2 = m, the last equation is m = β1e1(m) + β2e2(m). Differentiating on
both sides with respect to m, we get

1 = β1e
′
1(m) + β2e

′
2(m) ⇔ 1 = λ(m)

β2
1

ϕ
+ λ(m)β2

2 ⇔ λ(m) =
1

β2
1

ϕ
+ β2

2

.

Therefore, λ(m) is independent of m and thus e1(m) =
β1
ϕ

β21
ϕ
+β2

2

m + b1 and e2(m) =

β2

β21
ϕ
+β2

2

m+ b2 for some b1, b2 ∈ R.

E Proof of Proposition 4

Proof of Proposition 4. For any strategy s(θ) = β′θ, we have the unconditional distribu-
tion over messages m induced by the score s, m ∼ N(0, σ2

s) where σ2
s = β2

1σ
2
1 + β2

2σ
2
2 +

2β1β2σ12 = β′Σβ. We also have that Cov(θi,m) = σis = βiσ
2
i + βjσ12. Therefore,

(σ1s, σ2s)
′ = Σβ.

The payoff of the sender can be rewritten, up to a constant, as

−a′Φa+ 2a′Φθ.

Therefore, the ex-ante payoff – given that the best-reply to m is α(m) = Σβ
β′Σβ

m – is

E[−α(m)′Φα(m) + 2α(m)′Φθ]

= E[− β′Σ

β′Σβ
mΦ

Σβ

β′Σβ
m+ 2

β′Σ

β′Σβ
mΦθ]

=
β′ΣΦΣβ

β′Σβ
,

where the last equality follows from E[m2] = β′Σβ and E[θm] = Σβ. The matrix ΣΦΣ is
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positive semidefinite and symmetric. Therefore, β′ΣΦΣβ
β′Σβ

is a generalized Rayleigh quotient
(see e.g., Parlett, 1998, Chapter 15) and the two stationary points, up to a rescaling of β, of
β′ΣΦΣβ
β′Σβ

are the eigenvectors of Σ−1(ΣΦΣ) = ΦΣ, i.e., the points β such that there is λ ∈ R
such that ΦΣβ = λβ. Moreover, as generalized Rayleigh quotients attain a maximum and
a minimum, one of the stationary points must correspond to a maximizer, the other to a
minimizer.12

The equilibrium problem can be expressed as follows. Given a belief that the sender uses a
linear strategy β, the receiver chooses α(m) = Σβ

β′Σβ
m. In equilibrium, the sender chooses

a signal m for each realization of θ:

max
m

−β′ΣmΦΣβm

(β′Σβ)2
+ 2

β′ΣmΦθ

β′Σβ
.

The objective function is quadratic in m and therefore the maximizer must satisfy the first-
order condition:

m = β′Σβ
β′ΣΦ

β′ΣΦΣβ
θ.

Therefore, any equilibrium strategy must satisfy

β′ = β′Σβ
β′ΣΦ

β′ΣΦΣβ
⇔ β =

β′Σβ

β′ΣΦΣβ
ΦΣβ.

Take any equilibrium strategy β. From the equilibrium condition, β is an eigenvector of
ΦΣ with eigenvalue β′ΣΦΣβ

β′Σβ
.

Conversely, take an eigenvector β of ΦΣ, with eigenvalue λ. Plugging in the equilibrium
condition, we get

β = β′Σβ
ΦΣβ

β′ΣΦΣβ
⇔ β =

β′Σβ

λβ′Σβ
λβ, (8)

where the equivalence follows from ΦΣβ = λβ and β′ΣΦ = λβ′. Equation (8) is satisfied
and therefore β is an equilibrium strategy.

12If the state had more than two dimensions, there would be more stationary points/eigenvectors; yet, it
would still be the case that one of the eigenvectors corresponds to a maximizer of the Rayleigh quotient,
another to the minimizer.
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F Value of Ignorance

We show here, by way of an example, that sender and receiver can be better off if the
sender is less informed.

Let ϕ = 1, Θ = {0, 1, 2} × {0, 2}, f(0, 0) = f(1, 2) = f(2, 2) = ϵ
3

and f(0, 2) =

f(1, 0) = f(2, 0) = 1−ϵ
3

, for some ϵ < 5
24

. We consider the standard setting and a setting
in which the sender does not observe θ2 and therefore can only select strategies that assign
the same message to any two states with the same θ1. In Figure 3, empty circles denote
low-probability states and filled circles high-probability ones. The figure illustrates a score
that assigns to each state (θ1, θ2) a message equal to θ1. We refer to this as score s1.

0 1 2

m = 2
m = 1
m = 0

E[θ|m]

Figure 3

If the sender does not observe θ2, then score s1 is an equilibrium strategy.13 We show next
that any equilibrium score in the standard setting is associated with a larger loss than s1.

We proceed in two steps. First, we establish that any score such that s(θ) = s(θ′) for two
high-probability states is associated with a larger loss than s1.

The expected loss associated with s1 is: 4ϵ(1 − ϵ). Consider a score s such that s(0, 2) =
s(1, 0) = m′. In any equilibrium in which µ(θ) = s(θ) for all θ, the loss conditional on
θ ∈ {(0, 2), (1, 0)} is minimized if α(m′) = (0.5, 1). For such action, the loss conditional
on θ ∈ {(0, 2), (1, 0)} is 5

4
. Thus

Pr(θ ∈ {(0, 2), (1, 0)})× 5

4

13For this strategy, E(θ|m = 0) = (0, 2(1 − ϵ)), and E(θ|m = 1) = (1, 2ϵ). The expected loss,
conditional on θ = 0, is 4ϵ(1 − ϵ). Deviating to report m = 1 upon observing θ = 0 induces a loss,
conditional on θ = 0, equal to 1 + 4(1− ϵ)(1− 2ϵ)2. As 1 + 4(1− ϵ)(1− 2ϵ)2 > 4ϵ(1− ϵ), the deviation
is not profitable. Similar arguments show that the sender does not have any profitable deviation.
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is a lower bound on the loss from any score pooling (0, 2) and (1, 0) together. Note that

Pr(θ ∈ {(0, 2), (1, 0)})× 5

4
= (1− ϵ)

5

6
> 4ϵ(1− ϵ) ⇔ ϵ <

5

24
.

Hence any score s such that s(0, 2) = s(1, 0) is associated with a larger loss than s1.
Similar arguments apply for any score such that s(θ) = s(θ′) for any two high-probability
states.

The second step amounts to showing that any score such that s(0, 2) ̸= s(1, 0) ̸= s(2, 2) is
not an equilibrium score.

To see this, let score s satisfy s(0, 2) ̸= s(1, 0) ̸= s(2, 2). The IVP requires s(1, 2) = 1.
We consider two cases: s(1, 0) = 1 and s(1, 0) ̸= 1.

If s(1, 0) = 1, let, without loss, s(0, 2) = 0 and therefore s(2, 2) = 2. In this case, the IVP
requires s(0, 0) ̸= 2 and s(2, 0) ̸= 0. This in turn implies that - in any equilibrium such
that µ(θ) = s(θ) for all θ - the receiver chooses α(0) = (0, x), where x ≥ 2(1 − ϵ) and
α(1) = (y, z), where z ≤ 2ϵ. For any value of x, y and z, in state (1, 2) the sender has a
profitable deviation to report m = 0 instead of m = 1. So the score is not an equilibrium
score.

If instead s(1, 0) ̸= 1, let, without loss, s(1, 0) = 2, s(0, 2) = 0 and s(2, 2) = 1. The IVP
requires s(0, 0) = s(1, 2) = 1 and s(2, 0) ∈ {1, 2}. Regardless of whether s(2, 0) = 1 or
s(2, 0) = 2, in any equilibrium such that µ(θ) = s(θ) for all θ, in state (0, 0) - the sender
has a profitable deviation to report m = 0 instead of m = 1.

We conclude that any equilibrium score in the standard setting is associated with a larger
loss than s1: in this example, sender and receiver can be better off if the sender does not
observe the realization of θ2.
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